skip to main content


Search for: All records

Award ID contains: 1209402

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    To date, there is no consensus on the probability distribution of particle velocities during bedload transport, with some studies suggesting an exponential‐like distribution while others a Gaussian‐like distribution. Yet, the form of this distribution is key for the determination of sediment flux and the dispersion characteristics of tracers in rivers. Combining theoretical analysis of the Fokker‐Planck equation for particle motions, numerical simulations of the corresponding Langevin equation, and measurements of motion in high‐speed imagery from particle‐tracking experiments, we examine the statistics of bedload particle trajectories, revealing a two‐regime distance‐time (LTp) scaling for the particle hops (measured from start to stop). We show that particles of short hop distances scale asL~giving rise to the Weibull‐like front of the hop distance distribution, while particles of long hop distances transition to a different scaling regime ofL~Tpleading to the exponential‐like tail of the hop distance distribution. By demonstrating that the predominance of mostly long hop particles results in a Gaussian‐like velocity distribution, while a mixture of both short and long hop distance particles leads to an exponential‐like velocity distribution, we argue that the form of the probability distribution of particle velocities can depend on the physical environment within which particle transport occurs, explaining and unifying disparate views on particle velocity statistics reported in the literature.

     
    more » « less
  2. Abstract

    Due to its importance for water availability in the tropics and subtropics, efficient tracking of the seasonal and long‐term shifts of the intertropical convergence zone (ITCZ) is of great value. Current approaches, which are based on tracking changes in the annual mean of single variables, ignore the intra‐annual dynamics, while more sophisticated methods are computationally intensive. Here we propose a new probabilistic framework to track the ITCZ, which is based on tracking the location of maximum precipitation and minimum outgoing longwave radiation in overlapping longitudinal windows. Our framework is seasonally and longitudinally explicit, allows for joint consideration of multiple variables to define the ITCZ, and is flexible in its implementation, thus, it can be used in analyses of different scales and scopes. We apply our framework to analyze the recent climatology of the ITCZ and report a southward trend in its location over central Pacific in the late twentieth century.

     
    more » « less
  3. Abstract

    Accounting for the burial of tracer particles during bedload transport is an important component in the formulation of tracer dispersal in rivers. Herein we propose a modified active layer formulation, which accounts for the effect of burial and admits analytical solutions, enabling insightful exploration of the phenomenon of superdiffusion of bedload tracers at the intermediate timescale. This phenomenon has been observed in recent numerical results using the 2‐D Exner‐Based Master Equation. By assuming that tracers in the active layer can exchange with nontracer particles in the substrate layer to preserve mass, and that tracers entering the substrate layer get permanently trapped during the timescale of analysis, we are able to deduce governing equations for the tracer concentration in both layers. The active layer tracer concentration is shown to be governed by an advection‐diffusion equation with a sink term, and the increase of tracers in the substrate layer is driven by a corresponding source term. The solution for the variance of tracer population is analytically determined and can be approximated by the sum of a diffusion‐induced scaling (t1) and an advection‐induced scaling (t3) terms at the intermediate timescale, which explains the phenomenon of superdiffusion. The proposed formulation is shown to be able to capture the key characteristics of tracer transport as inferred by comparison with available results of numerical simulations.

     
    more » « less
  4. Abstract

    Observatory‐scale data collection efforts allow unprecedented opportunities for integrative, multidisciplinary investigations in large, complex watersheds, which can affect management decisions and policy. Through the National Science Foundation‐funded REACH (REsilience under Accelerated CHange) project, in collaboration with the Intensively Managed Landscapes‐Critical Zone Observatory, we have collected a series of multidisciplinary data sets throughout the Minnesota River Basin in south‐central Minnesota, USA, a 43,400‐km2tributary to the Upper Mississippi River. Postglacial incision within the Minnesota River valley created an erosional landscape highly responsive to hydrologic change, allowing for transdisciplinary research into the complex cascade of environmental changes that occur due to hydrology and land use alterations from intensive agricultural management and climate change. Data sets collected include water chemistry and biogeochemical data, geochemical fingerprinting of major sediment sources, high‐resolution monitoring of river bluff erosion, and repeat channel cross‐sectional and bathymetry data following major floods. The data collection efforts led to development of a series of integrative reduced complexity models that provide deeper insight into how water, sediment, and nutrients route and transform through a large channel network and respond to change. These models represent the culmination of efforts to integrate interdisciplinary data sets and science to gain new insights into watershed‐scale processes in order to advance management and decision making. The purpose of this paper is to present a synthesis of the data sets and models, disseminate them to the community for further research, and identify mechanisms used to expand the temporal and spatial extent of short‐term observatory‐scale data collection efforts.

     
    more » « less