skip to main content


Title: Enhanced Photoluminescence and Stability of CH 3 NH 3 PbBr 3 Perovskite Nanocrystals with Protonated Melamine
Abstract

The surface of CH3NH3PbBr3perovskite nanocrystals (PNCs) plays a critical role in determining their optical properties and stability. The introduction of capping ligands can enhance photoluminescence (PL), reduce non‐radiative recombination, and improve stability. Here, we report a facile synthesis of CH3NH3PbBr3PNCs with strong and highly stable green PL using melamine (Mela) as a simple and low‐cost capping ligand. The resulting CH3NH3PbBr3/Mela PNCs have cubic phase crystal structure with an average particle size of 5.29±0.06 nm. The optical absorption and PL of the CH3NH3PbBr3/Mela PNCs with narrow bandwidth can be tuned within the visible region, and the PL quantum yield (QY) reached 52.3% compared to 0.4% the pristine CH3NH3PbBr3PNCs. A synergistic effect between NH3+and the electron‐rich nitrogen atoms together with p‐p stacking capacity, likely contributes to enhance the PL by effectively passivating of the trap states of PNCs. Furthermore, melamine‐capped PNCs show high stability in protic solvents as a result of the steric bulkiness of the triazine rings, owing to the planar structure together with hydrogen bonding of melamine, which prevents solvent molecules from reaching and reacting with the core of PNCs. This study demonstrates a simple and effective approach for stabilizing PNCs for potential applications such as solar cells and LEDs.

 
more » « less
NSF-PAR ID:
10054052
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemNanoMat
Volume:
4
Issue:
4
ISSN:
2199-692X
Page Range / eLocation ID:
p. 409-416
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding interfacial reactions that occur between the active layer and charge‐transport layers can extend the stability of perovskite solar cells. In this study, the exposure of methylammonium lead iodide (CH3NH3PbI3) thin films prepared on poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)‐coated glass to 70% relative humidity (R.H.) leads to a perovskite crystal structure change from tetragonal to cubic within 2 days. Interface‐sensitive photoluminescence measurements indicate that the structural change originates at the PEDOT:PSS/perovskite interface. During exposure to 30% R.H., the same structural change occurs over a much longer time scale (>200 days), and a reflection consistent with the presence of (CH3)2NH2PbI3is detected to coexist with the cubic phase by X‐ray diffraction pattern. The authors propose that chemical interactions at the PEDOT:PSS/perovskite interface, facilitated by humidity, promote the formation of dimethylammonium, (CH3)2NH2+. The partial A‐site substitution of CH3NH3+for (CH3)2NH2+to produce a cubic (CH3NH3)1−x[(CH3)2NH2]xPbI3phase explains the structural change from tetragonal to cubic during short‐term humidity exposure. When (CH3)2NH2+content exceeds its solubility limit in the perovskite during longer humidity exposures, a (CH3)2NH2+‐rich, hexagonal phase of (CH3NH3)1−x[(CH3)2NH2]xPbI3emerges. These interfacial interactions may have consequences for device stability and performance beyond CH3NH3PbI3model systems and merit close attention from the perovskite research community.

     
    more » « less
  2. Recent progress has been made on the synthesis and characterization of metal halide perovskite magic-sized clusters (PMSCs) with ABX 3 composition ( A = C H 3 N H 3 + or Cs + , B = P b 2 + , and X = C l − , Br - , or I - ). However, their mechanism of growth and structure is still not well understood. In our effort to understand their structure and growth, we discovered that a new species can be formed without the CH 3 NH 3 + component, which we name as molecular clusters (MCs). Specifically, CH 3 NH 3 PbBr 3 PMSCs, with a characteristic absorption peak at 424 nm, are synthesized using PbBr 2 and CH 3 NH 3 Br as precursors and butylamine (BTYA) and valeric acid (VA) as ligands, while MCs, with an absorption peak at 402 nm, are synthesized using solely PbBr 2 and BTYA, without CH 3 NH 3 Br. Interestingly, PMSCs are converted spontaneously overtime into MCs. An isosbestic point in their electronic absorption spectra indicates a direct interplay between the PMSCs and MCs. Therefore, we suggest that the MCs are precursors to the PMSCs. From spectroscopic and extended X-ray absorption fine structure (EXAFS) results, we propose some tentative structural models for the MCs. The discovery of the MCs is critical to understanding the growth of PMSCs as well as larger perovskite quantum dots (PQDs) or nanocrystals (PNCs). 
    more » « less
  3. Abstract

    The spatial heterogeneity of carrier dynamics in polycrystalline metal halide perovskite (MHP) thin films has a strong influence on photovoltaic device performance; however, the underlying cause is not yet clearly understood. Here, the sub‐micrometer scale mapping of charge carrier dynamics in CH3NH3PbI3thin films using time‐resolved nonlinear optical microscopy, specifically transient absorption microscopy (TAM) with sub‐picosecond (ps) and time‐resolved photoluminescence (PL) microscopy with nanosecond temporal resolution is reported. To study the influence of physical morphology on charge carrier dynamics, MHP thin films having granular‐ and fibrous structures are investigated. On both types of films, spatial regions with short‐lived transient gain signals (fast nonradiative relaxation within ≈1 ps) typically show slower charge recombination via radiative relaxation, which is attributed to the presence of additional energy states near the band edge. In addition, fibrous films show longer PL lifetimes. Interestingly, the functional contrast shown in TAM images exhibits fundamental differences from the structural contrast shown in scanning electron microscopy images, implying that the variation of trap density in the bulk contributes to the observed spatial heterogeneity in carrier dynamics.

     
    more » « less
  4. Abstract

    Organic–inorganic halide perovskites are promising photodetector materials due to their strong absorption, large carrier mobility, and easily tunable bandgap. Up to now, perovskite photodetectors are mainly based on polycrystalline thin films, which have some undesired properties such as large defective grain boundaries hindering the further improvement of the detector performance. Here, perovskite thin‐single‐crystal (TSC) photodetectors are fabricated with a vertical p–i–n structure. Due to the absence of grain‐boundaries, the trap densities of TSCs are 10–100 folds lower than that of polycrystalline thin films. The photodetectors based on CH3NH3PbBr3and CH3NH3PbI3TSCs show low noise of 1–2 fA Hz−1/2, yielding a high specific detectivity of 1.5 × 1013cm Hz1/2W−1. The absence of grain boundaries reduces charge recombination and enables a linear response under strong light, superior to polycrystalline photodetectors. The CH3NH3PbBr3photodetectors show a linear response to green light from 0.35 pW cm−2to 2.1 W cm−2, corresponding to a linear dynamic range of 256 dB.

     
    more » « less
  5. Abstract

    Organic–inorganic hybrid perovskites have emerged as promising optoelectronic materials for applications in photovoltaic and optoelectronic devices. Particularly, 2D layer‐structured hybrid perovskites are of great interest due to their remarkable optical and electrical properties, which can be easily tuned by selecting suitable organic and inorganic moieties during the material synthesis. Here, the solution‐phase growth of a large square‐shaped single‐crystalline 2D hybrid perovskite, phenethylammonium lead bromide (C6H5C2H4NH3)2PbBr4(PEPB), with thickness as few as 3 unit cell layers is demonstrated. Compared to bulk crystals, the 2D PEPB nanocrystals show a major blueshifted photoluminescence (PL) peak at 409 nm indicating an increase in bandgap of 40 meV. Besides the major peak, two new PL peaks located at 480 and 525 nm are observed from the hybrid perovskite nanocrystals. PEPB nanocrystals with different thicknesses show different colors, which can be used to estimate the thickness of the nanocrystals. Time‐resolved reflectance spectroscopy is used to investigate the exciton dynamics, which exhibits a biexponential decay with an amplitude‐weighted lifetime of 16.7 ps. The high‐quality 2D (C6H5C2H4NH3)2PbBr4nanocrystals are expected to have high PL quantum efficiency and potential applications for light‐emitting devices.

     
    more » « less