Mn2+doping of CsPbBr3perovskite magic‐sized clusters (PMSCs) has been reported previously, where PMSCs with first excitonic absorption and photoluminescence (PL) around 425 nm were reported originally, followed by Mn2+‐doped PMSCs with host absorption and PL around 400 nm. There, the observed 25 nm blueshift was attributed to smaller PMSCs or the Cl−ions introduced by MnCl2as dopant precursor. However, subsequent studies suggest that the 400 nm band may instead be due to ligand‐assisted metal halide molecular clusters (MHMCs), which lack the A component of perovskite. This raises the question whether the originally claimed Mn2+‐doped PMSCs are actually MHMCs. To unambiguously address this issue, Mn2+‐doped CH3NH3PbBr3PMSCs were synthesized with PL at both 440 nm, attributed to the PMSC, and at 600 nm, attributed to Mn2+. Blueshifting of the host absorption and PL bands due to Cl−codoping is avoided by selecting MnBr2as dopant precursor rather than MnCl2. Dopant incorporation into PMSCs is further supported by PL excitation, time‐resolved PL, and electron paramagnetic resonance studies. This work provides direct and strong evidence of successful Mn2+doping in PMSCs.
more »
« less
Interplay between Perovskite Magic-Sized Clusters and Amino Lead Halide Molecular Clusters
Recent progress has been made on the synthesis and characterization of metal halide perovskite magic-sized clusters (PMSCs) with ABX 3 composition ( A = C H 3 N H 3 + or Cs + , B = P b 2 + , and X = C l − , Br - , or I - ). However, their mechanism of growth and structure is still not well understood. In our effort to understand their structure and growth, we discovered that a new species can be formed without the CH 3 NH 3 + component, which we name as molecular clusters (MCs). Specifically, CH 3 NH 3 PbBr 3 PMSCs, with a characteristic absorption peak at 424 nm, are synthesized using PbBr 2 and CH 3 NH 3 Br as precursors and butylamine (BTYA) and valeric acid (VA) as ligands, while MCs, with an absorption peak at 402 nm, are synthesized using solely PbBr 2 and BTYA, without CH 3 NH 3 Br. Interestingly, PMSCs are converted spontaneously overtime into MCs. An isosbestic point in their electronic absorption spectra indicates a direct interplay between the PMSCs and MCs. Therefore, we suggest that the MCs are precursors to the PMSCs. From spectroscopic and extended X-ray absorption fine structure (EXAFS) results, we propose some tentative structural models for the MCs. The discovery of the MCs is critical to understanding the growth of PMSCs as well as larger perovskite quantum dots (PQDs) or nanocrystals (PNCs).
more »
« less
- Award ID(s):
- 1904547
- PAR ID:
- 10330591
- Date Published:
- Journal Name:
- Research
- Volume:
- 2021
- ISSN:
- 2639-5274
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We have synthesized inherently chiral cesium lead halide perovskite magic-sized clusters (PMSCs) and ligand-assisted metal halide molecular clusters (MHMCs) using the achiral ligands octanoic acid (OCA) and octylamine (OCAm). UV–vis electronic absorption was used to confirm characteristic absorption bands while circular dichroism (CD) spectroscopy was utilized to determine their chiroptical activity in the 412–419 and 395–405 nm regions, respectively. In contrast, the larger sized counterpart of PMSCs, namely, perovskite quantum dots (PQDs), do not show chirality. The inherent chirality of the clusters is tentatively attributed to a twisted chiral layered structure, defect-induced chiral structure, or twisted Pb–Br octahedramore » « less
-
Control over the nucleation and growth of lead-halide perovskite crystals is critical to obtain semiconductor films with high quantum yields in optoelectronic devices. In this report, we use the change in fluorescence brightness to image the transformation of individual lead bromide (PbBr 2 ) nanocrystals to methylammonium lead bromide (CH 3 NH 3 PbBr 3 ) via intercalation of CH 3 NH 3 Br. Analyzing this reaction one nanocrystal at a time reveals information that is masked when the fluorescence intensity is averaged over many particles. Sharp rises in the intensity of single nanocrystals indicate they transform much faster than the time it takes for the ensemble average to transform. While the ensemble reaction rate increases with increasing CH 3 NH 3 Br concentration, the intensity rises for individual nanocrystals are insensitive to the CH 3 NH 3 Br concentration. To explain these observations, we propose a phase-transformation model in which the reconstructive transitions necessary to convert a PbBr 2 nanocrystal into CH 3 NH 3 PbBr 3 initially create a high energy barrier for ion intercalation. A critical point in the transformation occurs when the crystal adopts the perovskite phase, at which point the activation energy for further ion intercalation becomes progressively smaller. Monte Carlo simulations that incorporate this change in activation barrier into the likelihood of reaction events reproduce key experimental observations for the intensity trajectories of individual particles. The insights gained from this study may be used to further control the crystallization of CH 3 NH 3 PbBr 3 and other solution-processed semiconductors.more » « less
-
Abstract BackgroundResearch into perovskite nanocrystals (PNCs) has uncovered interesting properties compared to their bulk counterparts, including tunable optical properties due to size‐dependent quantum confinement effect (QCE). More recently, smaller PNCs with even stronger QCE have been discovered, such as perovskite magic sized clusters (PMSCs) and ligand passivated PbX2metal halide molecular clusters (MHMCs) analogous to perovskites. ObjectiveThis review aims to present recent data comparing and contrasting the optical and structural properties of PQDs, PMSCs, and MHMCs, where CsPbBr3PQDs have first excitonic absorption around 520 nm, the corresponding PMSCS have absorption around 420 nm, and ligand passivated MHMCs absorb around 400 nm. ResultsCompared to normal perovskite quantum dots (PQDs), these clusters exhibit both a much bluer optical absorption and emission and larger surface‐to‐volume (S/V) ratio. Due to their larger S/V ratio, the clusters tend to have more surface defects that require more effective passivation for stability. ConclusionRecent study of novel clusters has led to better understanding of their properties. The sharper optical bands of clusters indicate relatively narrow or single size distribution, which, in conjunction with their blue absorption and emission, makes them potentially attractive for applications in fields such as blue single photon emission.more » « less
-
null (Ed.)The past decade has witnessed tremendous advances in synthesis of metal halide perovskites and their use for a rich variety of optoelectronics applications. Metal halide perovskite has the general formula ABX 3 , where A is a monovalent cation (which can be either organic ( e.g. , CH 3 NH 3 + (MA), CH(NH 2 ) 2 + (FA)) or inorganic ( e.g. , Cs + )), B is a divalent metal cation (usually Pb 2+ ), and X is a halogen anion (Cl − , Br − , I − ). Particularly, the photoluminescence (PL) properties of metal halide perovskites have garnered much attention due to the recent rapid development of perovskite nanocrystals. The introduction of capping ligands enables the synthesis of colloidal perovskite nanocrystals which offer new insight into dimension-dependent physical properties compared to their bulk counterparts. It is notable that doping and ion substitution represent effective strategies for tailoring the optoelectronic properties ( e.g. , absorption band gap, PL emission, and quantum yield (QY)) and stabilities of perovskite nanocrystals. The doping and ion substitution processes can be performed during or after the synthesis of colloidal nanocrystals by incorporating new A′, B′, or X′ site ions into the A, B, or X sites of ABX 3 perovskites. Interestingly, both isovalent and heterovalent doping and ion substitution can be conducted on colloidal perovskite nanocrystals. In this review, the general background of perovskite nanocrystals synthesis is first introduced. The effects of A-site, B-site, and X-site ionic doping and substitution on the optoelectronic properties and stabilities of colloidal metal halide perovskite nanocrystals are then detailed. Finally, possible applications and future research directions of doped and ion-substituted colloidal perovskite nanocrystals are also discussed.more » « less
An official website of the United States government

