skip to main content


Title: Recursive Partitioning for Personalization using Observational Data
We study the problem of learning to choose from $m$ discrete treatment options (e.g., news item or medical drug) the one with best causal effect for a particular instance (e.g., user or patient) where the training data consists of passive observations of covariates, treatment, and the outcome of the treatment. The standard approach to this problem is regress and compare: split the training data by treatment, fit a regression model in each split, and, for a new instance, predict all $m$ outcomes and pick the best. By reformulating the problem as a single learning task rather than $m$ separate ones, we propose a new approach based on recursively partitioning the data into regimes where different treatments are optimal. We extend this approach to an optimal partitioning approach that finds a globally optimal partition, achieving a compact, interpretable, and impactful personalization model. We develop new tools for validating and evaluating personalization models on observational data and use these to demonstrate the power of our novel approaches in a personalized medicine and a job training application.  more » « less
Award ID(s):
1656996
PAR ID:
10054058
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 34th International Conference on Machine Learning (ICML)
Page Range / eLocation ID:
1789-1798
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the robust submodular partitioning problem, we aim to allocate a set of items into m blocks, so that the evaluation of the minimum block according to a submodular function is maximized. Robust submodular partitioning promotes the diversity of every block in the partition. It has many applications in machine learning, e.g., partitioning data for distributed training so that the gradients computed on every block are consistent. We study an extension of the robust submodular partition problem with additional constraints (e.g., cardinality, multiple matroids, and/or knapsack) on every block. For example, when partitioning data for distributed training, we can add a constraint that the number of samples of each class is the same in each partition block, ensuring data balance. We present two classes of algorithms, i.e., Min-Block Greedy based algorithms (with an ⌦(1/m) bound), and Round-Robin Greedy based algorithms (with a constant bound) and show that under various constraints, they still have good approximation guarantees. Interestingly, while normally the latter runs in only weakly polynomial time, we show that using the two together yields strongly polynomial running time while preserving the approximation guarantee. Lastly, we apply the algorithms on a real-world machine learning data partitioning problem showing good results. 
    more » « less
  2. null (Ed.)
    Web personalization, e.g., recommendation or relevance search, tailoring a service/product to accommodate specific online users, is becoming increasingly important. Inductive personalization aims to infer the relations between existing entities and unseen new ones, e.g., searching relevant authors for new papers or recommending new items to users. This problem, however, is challenging since most of recent studies focus on transductive problem for existing entities. In addition, despite some inductive learning approaches have been introduced recently, their performance is sub-optimal due to relatively simple and inflexible architectures for aggregating entity’s content. To this end, we propose the inductive contextual personalization (ICP) framework through contextual relation learning. Specifically, we first formulate the pairwise relations between entities with a ranking optimization scheme that employs neural aggregator to fuse entity’s heterogeneous contents. Next, we introduce a node embedding term to capture entity’s contextual relations, as a smoothness constraint over the prior ranking objective. Finally, the gradient descent procedure with adaptive negative sampling is employed to learn the model parameters. The learned model is capable of inferring the relations between existing entities and inductive ones. Thorough experiments demonstrate that ICP outperforms numerous baseline methods for two different applications, i.e., relevant author search and new item recommendation. 
    more » « less
  3. Abstract

    It is common to split a dataset into training and testing sets before fitting a statistical or machine learning model. However, there is no clear guidance on how much data should be used for training and testing. In this article, we show that the optimal training/testing splitting ratio is , where is the number of parameters in a linear regression model that explains the data well.

     
    more » « less
  4. null (Ed.)
    Across a wide variety of domains, artificial agents that can adapt and personalize to users have potential to improve and transform how social services are provided. Because of the need for personalized interaction data to drive this process, long-term (or longitudinal) interactions between users and agents, which unfold over a series of distinct interaction sessions, have attracted substantial research interest. In recognition of the expanded scope and structure of a long-term interaction, researchers are also adjusting the personalization models and algorithms used, orienting toward “continual learning” methods, which do not assume a stationary modeling target and explicitly account for the temporal context of training data. In parallel, researchers have also studied the effect of “multitask personalization,” an approach in which an agent interacts with users over multiple different tasks contexts throughout the course of a long-term interaction and learns personalized models of a user that are transferrable across these tasks. In this paper, we unite these two paradigms under the framework of “Lifelong Personalization,” analyzing the effect of multitask personalization applied to dynamic, non-stationary targets. We extend the multi-task personalization approach to the more complex and realistic scenario of modeling dynamic learners over time, focusing in particular on interactive scenarios in which the modeling agent plays an active role in teaching the student whose knowledge the agent is simultaneously attempting to model. Inspired by the way in which agents use active learning to select new training data based on domain context, we augment a Gaussian Process-based multitask personalization model with a mechanism to actively and continually manage its own training data, allowing a modeling agent to remove or reduce the weight of observed data from its training set, based on interactive context cues. We evaluate this method in a series of simulation experiments comparing different approaches to continual and multitask learning on simulated student data. We expect this method to substantially improve learning in Gaussian Process models in dynamic domains, establishing Gaussian Processes as another flexible modeling tool for Long-term Human-Robot Interaction (HRI) Studies. 
    more » « less
  5. Applying machine learning (ML) in design flow is a popular trend in Electronic Design Automation (EDA) with various applications from design quality predictions to optimizations. Despite its promise, which has been demonstrated in both academic researches and industrial tools, its effectiveness largely hinges on the availability of a large amount of high-quality training data. In reality, EDA developers have very limited access to the latest design data, which is owned by design companies and mostly confidential. Although one can commission ML model training to a design company, the data of a single company might be still inadequate or biased, especially for small companies. Such data availability problem is becoming the limiting constraint on future growth of ML for chip design. In this work, we propose an Federated-Learning based approach for well-studied ML applications in EDA. Our approach allows an ML model to be collaboratively trained with data from multiple clients but without explicit access to the data for respecting their data privacy. To further strengthen the results, we co-design a customized ML model FLNet and its personalization under the decentralized training scenario. Experiments on a comprehensive dataset show that collaborative training improves accuracy by 11% compared with individual local models, and our customized model FLNet significantly outperforms the best of previous routability estimators in this collaborative training flow. 
    more » « less