skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive Discretization in Online Reinforcement Learning
Discretization-based approaches to solving online reinforcement learning problems are studied extensively on applications such as resource allocation and cache management. The two major questions in designing discretization-based algorithms are how to create the discretization and when to refine it. There are several experimental results investigating heuristic approaches to these questions but little theoretical treatment. In this paper, we provide a unified theoretical analysis of model-free and model-based, tree-based adaptive hierarchical partitioning methods for online reinforcement learning. We show how our algorithms take advantage of inherent problem structure by providing guarantees that scale with respect to the “zooming” instead of the ambient dimension, an instance-dependent quantity measuring the benignness of the optimal [Formula: see text] function. Many applications in computing systems and operations research require algorithms that compete on three facets: low sample complexity, mild storage requirements, and low computational burden for policy evaluation and training. Our algorithms are easily adapted to operating constraints, and our theory provides explicit bounds across each of the three facets. Funding: This work is supported by funding from the National Science Foundation [Grants ECCS-1847393, DMS-1839346, CCF-1948256, and CNS-1955997] and the Army Research Laboratory [Grant W911NF-17-1-0094]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2396 .  more » « less
Award ID(s):
1955997 1948256 1847393
PAR ID:
10437343
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Operations Research
ISSN:
0030-364X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present an efficient algorithm for model-free episodic reinforcement learning on large (potentially continuous) state-action spaces. Our algorithm is based on a novel Q-learning policy with adaptive data-driven discretization. The central idea is to maintain a finer partition of the state-action space in regions which are frequently visited in historical trajectories, and have higher payoff estimates. We demonstrate how our adaptive partitions take advantage of the shape of the optimal Q-function and the joint space, without sacrificing the worst-case performance. In particular, we recover the regret guarantees of prior algorithms for continuous state-action spaces, which additionally require either an optimal discretization as input, and/or access to a simulation oracle. Moreover, experiments demonstrate how our algorithm automatically adapts to the underlying structure of the problem, resulting in much better performance compared both to heuristics and Q-learning with uniform discretization. 
    more » « less
  2. Goal-oriented Reinforcement Learning, where the agent needs to reach the goal state while simultaneously minimizing the cost, has received significant attention in real-world applications. Its theoretical formulation, stochastic shortest path (SSP), has been intensively researched in the online setting. Nevertheless, it remains understudied when such an online interaction is prohibited and only historical data is provided. In this paper, we consider the offline stochastic shortest path problem when the state space and the action space are finite. We design the simple value iteration-based algorithms for tackling both offline policy evaluation (OPE) and offline policy learning tasks. Notably, our analysis of these simple algorithms yields strong instance-dependent bounds which can imply worst-case bounds that are near-minimax optimal. We hope our study could help illuminate the fundamental statistical limits of the offline SSP problem and motivate further studies beyond the scope of current consideration. 
    more » « less
  3. Reinforcement learning (RL) in low-data and risk-sensitive domains requires performant and flexible deployment policies that can readily incorporate constraints during deployment. One such class of policies are the semi-parametric H-step lookahead policies, which select actions using trajectory optimization over a dynamics model for a fixed horizon with a terminal value function. In this work, we investigate a novel instantiation of H-step lookahead with a learned model and a terminal value function learned by a model-free off-policy algorithm, named Learning Off-Policy with Online Planning (LOOP). We provide a theoretical analysis of this method, suggesting a tradeoff between model errors and value function errors and empirically demonstrate this tradeoff to be beneficial in deep reinforcement learning. Furthermore, we identify the "Actor Divergence" issue in this framework and propose Actor Regularized Control (ARC), a modified trajectory optimization procedure. We evaluate our method on a set of robotic tasks for Offline and Online RL and demonstrate improved performance. We also show the flexibility of LOOP to incorporate safety constraints during deployment with a set of navigation environments. We demonstrate that LOOP is a desirable framework for robotics applications based on its strong performance in various important RL settings. 
    more » « less
  4. In the Hidden-Parameter MDP (HiP-MDP) framework, a family of reinforcement learning tasks is generated by varying hidden parameters specifying the dynamics and reward function for each individual task. The HiP-MDP is a natural model for families of tasks in which meta- and lifelong-reinforcement learning approaches can succeed. Given a learned context encoder that infers the hidden parameters from previous experience, most existing algorithms fall into two categories: model transfer and policy transfer, depending on which function the hidden parameters are used to parameterize. We characterize the robustness of model and policy transfer algorithms with respect to hidden parameter estimation error. We first show that the value function of HiP-MDPs is Lipschitz continuous under certain conditions. We then derive regret bounds for both settings through the lens of Lipschitz continuity. Finally, we empirically corroborate our theoretical analysis by varying the hyper-parameters governing the Lipschitz constants of two continuous control problems; the resulting performance is consistent with our theoretical results. 
    more » « less
  5. Conversational recommender systems (CRS) dynamically obtain the users' preferences via multi-turn questions and answers. The existing CRS solutions are widely dominated by deep reinforcement learning algorithms. However, deep reinforcement learning methods are often criticized for lacking interpretability and requiring a large amount of training data to perform.In this paper, we explore a simpler alternative and propose a decision tree based solution to CRS. The underlying challenge in CRS is that the same item can be described differently by different users. We show that decision trees are sufficient to characterize the interactions between users and items, and solve the key challenges in multi-turn CRS: namely which questions to ask, how to rank the candidate items, when to recommend, and how to handle user's negative feedback on the recommendations. Firstly, the training of decision trees enables us to find questions which effectively narrow down the search space. Secondly, by learning embeddings for each item and tree nodes, the candidate items can be ranked based on their similarity to the conversation context encoded by the tree nodes. Thirdly, the diversity of items associated with each tree node allows us to develop an early stopping strategy to decide when to make recommendations. Fourthly, when the user rejects a recommendation, we adaptively choose the next decision tree to improve subsequent questions and recommendations. Extensive experiments on three publicly available benchmark CRS datasets show that our approach provides significant improvement to the state of the art CRS methods. 
    more » « less