skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Approach to Understand the Role of Identity in Engineering Leadership
In order to most effectively contribute to the development of solutions to society’s greatest challenges, engineers must learn to lead the interdisciplinary teams required to develop these solutions. However, most undergraduate engineering programs do little to develop leadership skills in their students. Perhaps, one reason for this gap between needs and education is a conflict between the development of an engineering identity and a leadership identity. To date, the literature contains little work that illustrates the role leadership concepts play in the formation of an engineering identity. Therefore, more work is needed to understand the formation of a leadership identity within the formation of an engineering identity. Together, these development processes constitute the formation of engineering leaders. This paper presents the methods underway to validate and refine a proposed theoretical model of engineering leadership identity development. This model can be used to reshape existing engineering leadership education programs and integrate leadership into the engineering curriculum in an innovative manner. The model starts with a fundamental assumption that the engineering leadership formation process is, at its core, an identity development process. This assumption is also central to two established theoretical perspectives that informed the construction of this model. Lave and Wenger’s (1991) communities of practice model argues that the development of a professional identity is the outcome of learning within a community of practice, and is frequently used to explain the process by which undergraduates develop a sense of engineering identity. The communities of practice model is then combined with Komives, Owen, Longerbeam, Mainella, and Osteen’s (2005) Leadership Identity Development Model to outline how engineering students might cultivate a self-concept as a leader. A key argument within this model is that college students develop a personal sense of leadership as an identity when they view leadership as a process, not merely a position. This paper first explains the development of this theoretical model of engineering leadership identity development combining the literature from engineering identity development, leadership identity development within collegiate populations, and engineering leadership. Following this explanation, this work focuses on the methods developed and currently being deployed to validate and refine the model, including initial findings from this research.  more » « less
Award ID(s):
1664231
PAR ID:
10054145
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASEE annual conference & exposition
Volume:
2017
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts—they must also be technical leaders. Greater numbers of engineering educators are recognizing this need and establishing engineering leadership certificates and minors through centers at universities throughout the country. While the implementation of these offerings is a step forward, most programs tend to focus on leadership as a set of skills or experiences bolted onto a traditional engineering education with limited formal evidence of the impact these experiences have on student development. The purpose of this study is to test the effect of experiences engineering students have in leadership roles on their perceived gains in leadership skills, using a national dataset. The framework guiding this study is a model for engineering leadership identity constructed from Lave and Wenger’s communities of practice model and Komives et al.’s model for leadership identity development (LID) which recognizes that the engineering formation process is, at its core, an identity development process. Engineering leadership is theorized to develop from peripheral participation in engineering communities of practice in ways that promote students’ leadership development. Specifically, undertaking leadership roles in curricular and co-curricular engineering activities develops students’ sense of engineering leadership identity, which results in their recognition of gains in different leadership skills. The data for this study come from the 2015 administration of the National Survey of Student Engagement (NSSE), overseen by the Center for Postsecondary Research at Indiana University. The NSSE is administered to a random sample of first- and fourth-year students, and focuses on curricular and co-curricular student engagement. In 2015, NSSE included a pilot module to assess leadership experiences at 21 participating institutions. The overall sample includes 2607 students who held a leadership role, among whom are 90 engineering students. The dependent variables for this study are a set of eight items prompting students to indicate the extent to which participation in a leadership role contributed to development of different leadership skills. This study employs multiple regression to test the relationships among leadership related experiences and eight leadership skill outcomes for engineering students. Significant results across the eight regression models paint a complex portrait regarding factors that affect gains in leadership skills for engineering students. For example, receiving formal leadership training is a significant positive predictor of only three of the leadership outcomes explored in this work: thinking critically and analytically, working effectively with others, and continuing leadership after college. These results can be utilized by educators engaged in Engineering Leadership education to tailor their program experiences and better achieve the desired educational outcomes. 
    more » « less
  2. Leaders in industry and government are calling for increasing innovation in STEM fields to maintain the nation's economic competitiveness [15]. Solving today's complex challenges will require cooperation among experts from many fields. Successful leaders must harness the diverse capabilities of teams composed of these experts and be technically skilled. Undergraduate engineering students can fill this need by learning how to be effective leaders during their formation as engineers. Unfortunately, many engineering students graduate with little development of leadership skills; engineering educators do not currently have a sufficient understanding of how engineering students develop into leaders. This NSF ECE supported project seeks to improve educators’ understanding of the interaction between leadership and engineering identities in the formation of undergraduate engineers. This work postulates that a cohesive engineering leadership identity should exist at the intersection of engineering and leadership identities. Now entering its second year the project is wrapping up its quantitative phase and is beginning the qualitative phase of investigation. This paper discusses the process of developing the qualitative research protocols used to explore identity formation in groups of undergraduate engineers at three different campuses. The discussion shows the formation of the protocol using prior work in leadership and engineering identity constructs from both this project and the literature. The protocol development, methods, and findings from early interviews are presented. Initial findings suggest several factors are important to engineering educators interested in developing engineers who are ready to lead. The findings include evidence of some level of conflict between engineering identity and leadership identity as well as further evidence of engineering students’ compartmentalization of leadership as outside of engineering. In addition, this paper includes the learning outcomes of three REU students who joined the project to assist with the development of the qualitative protocol. The REU students made significant contributions to initial data collection as participants and observers. The REU students were the lead authors of this paper. 
    more » « less
  3. The purpose of this work in progress research paper is to examine the differences in leadership self-efficacy among engineering undergraduates and their peers in other fields, and understand how leadership self-concept changes from the first through the fourth year of college. This study conceptualizes engineering formation as a professional identity development process, cultivated through participation in engineering communities of practice. The guiding hypothesis is that experiences that contribute to engineering identity, which focus on the development of technical mastery, conflict with the development of leadership self-concept. This work presents preliminary analysis of the differences between engineering undergraduates and their peers with regard to their leadership experiences during college. Preliminary results reveal a complex picture of the differences between engineering students and their peers in other STEM and non-STEM fields. Engineering students have the highest leadership self-efficacy of all three groups by the end of the fourth year of college, which mirrors differences in self-rated leadership skills at college entry. However, differences in leadership experiences during college vary among these three groups, and not consistently with their leadership self-efficacy. Engineers are least likely to participate in a leadership training during college and to value becoming a leader after college. Among engineering students, students who participate in internships, undergraduate research, and collaborate with peers report higher leadership. Leadership is unrelated to plans to enter engineering as a career. 
    more » « less
  4. null (Ed.)
    This work-in-progress research paper explores the way in which low-socioeconomic status (SES), first-year undergraduate engineering students develop their engineering identity. Identification with the field of engineering, or engineering identity development, is an ongoing process for students. While scholars have used retrospective studies to understand the developmental aspect of this process, a longitudinal study that follows students' engineering identity development could provide an advantageous viewpoint. In this study, we investigate the engineering identity profiles of incoming low-SES, high-achieving engineering students. We interviewed 13 students using a protocol focused on understanding the students' engineering identity profiles before entering engineering school. An integrated model of engineering identity development was used to frame the research and guide the analysis. Our preliminary results show existing pre-college identity-related patterns across students as well as initial ways of identifying with their major and engineering as a field. This work has contributions to research in the areas of engineering identity development as well as broadening understanding of engineering students who are both low-income and high-achieving. Our work has practical implications for academic and professional support programs for low-income engineering students and programs that aim to support engineering identity development. 
    more » « less
  5. This full research paper presents the exploratory factor analysis (EFA) results for the Professional Skill Opportunities survey (PSO) we designed to measure undergraduate engineering students’ opportunities to develop and practice important nontechnical professional skills. We use Dall’alba’s “ways of being” as the theoretical framework for the survey development and generated construct definitions based on past literature, expert review, and cognitive think-aloud interviews. We administered the survey in an engineering class at the beginning of the Spring 2022 semester. After comparing the three EFA models based on goodness-of-fit indices and model interpretability aligned to the theoretical model, the researchers selected a five-factor model. The EFA result and literature on leadership and teamwork showed these two skills are highly interrelated and could be combined into one construct to stress the “sharedness” of leadership responsibilities in teams. The result allowed our team to refine our item pool, revise construct definitions, and generate new items. In future work, we will administer the revised PSO survey to the same population at the end of the same semester as further validation. We also plan to explore the relationship between professional skill development opportunities and students’ social support. We hope the PSO survey can provide educators and institutions a means to offer scaffoldings and more opportunities for professional skill development and better prepare students for the engineering workforce. 
    more » « less