skip to main content


Title: Understanding the Perceived Impact of Engineers’ Leadership Experiences in College
In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts—they must also be technical leaders. Greater numbers of engineering educators are recognizing this need and establishing engineering leadership certificates and minors through centers at universities throughout the country. While the implementation of these offerings is a step forward, most programs tend to focus on leadership as a set of skills or experiences bolted onto a traditional engineering education with limited formal evidence of the impact these experiences have on student development. The purpose of this study is to test the effect of experiences engineering students have in leadership roles on their perceived gains in leadership skills, using a national dataset. The framework guiding this study is a model for engineering leadership identity constructed from Lave and Wenger’s communities of practice model and Komives et al.’s model for leadership identity development (LID) which recognizes that the engineering formation process is, at its core, an identity development process. Engineering leadership is theorized to develop from peripheral participation in engineering communities of practice in ways that promote students’ leadership development. Specifically, undertaking leadership roles in curricular and co-curricular engineering activities develops students’ sense of engineering leadership identity, which results in their recognition of gains in different leadership skills. The data for this study come from the 2015 administration of the National Survey of Student Engagement (NSSE), overseen by the Center for Postsecondary Research at Indiana University. The NSSE is administered to a random sample of first- and fourth-year students, and focuses on curricular and co-curricular student engagement. In 2015, NSSE included a pilot module to assess leadership experiences at 21 participating institutions. The overall sample includes 2607 students who held a leadership role, among whom are 90 engineering students. The dependent variables for this study are a set of eight items prompting students to indicate the extent to which participation in a leadership role contributed to development of different leadership skills. This study employs multiple regression to test the relationships among leadership related experiences and eight leadership skill outcomes for engineering students. Significant results across the eight regression models paint a complex portrait regarding factors that affect gains in leadership skills for engineering students. For example, receiving formal leadership training is a significant positive predictor of only three of the leadership outcomes explored in this work: thinking critically and analytically, working effectively with others, and continuing leadership after college. These results can be utilized by educators engaged in Engineering Leadership education to tailor their program experiences and better achieve the desired educational outcomes.  more » « less
Award ID(s):
1664231
NSF-PAR ID:
10089860
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE annual conference & exposition
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6]. The purpose of this quantitative research study is to identify dimensions of career orientations and anchors at various educational stages to map to ET career pathways. The research question this study aims to answer is: For students educated in two-year college ET programs, how do the different dimensions of career orientations, at various phases of professional preparation, impact experiences and development of professional profiles and pathways? The participants (n=308) in this study represent three different groups: (1) students in engineering technology related programs from a medium rural-serving technical college (n=136), (2) students in engineering technology related programs from a large urban-serving technical college (n=52), and (3) engineering students at a medium Research 1 university who have transferred from a two-year college (n=120). All participants completed Schein’s Career Anchor Inventory [5]. This instrument contains 40 six-point Likert-scale items with eight subscales which correlate to the eight different career anchors. Additional demographic questions were also included. The data analysis includes graphical displays for data visualization and exploration, descriptive statistics for summarizing trends in the sample data, and then inferential statistics for determining statistical significance. This analysis examines career anchor results across groups by institution, major, demographics, types of educational experiences, types of work experiences, and career influences. This cross-group analysis aids in the development of profiles of values, talents, abilities, and motives to support customized career development tailored specifically for ET students. These findings contribute research to a gap in ET and two-year college engineering education research. Practical implications include use of findings to create career pathways mapped to career anchors, integration of career development tools into two-year college curricula and programs, greater support for career counselors, and creation of alternate and more diverse pathways into engineering. Words: 489 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] The Integrated Postsecondary Education Data System, (IPEDS). (2014). Data on engineering technology degrees. [3] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [4] Unfried, A., Faber, M., Stanhope, D.S., Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineeirng, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622-639. [5] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [6] Schein, E.H., & Van Maanen, J. (2013). Career Anchors, 4th ed. San Francisco: Wiley. 
    more » « less
  2. In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts, they must also be technical leaders. Thankfully, greater numbers of engineering educators are recognizing this need and are consequently establishing engineering leadership certificates, minors, and even full degree programs through centers at universities throughout the country. However, for these programs to reach their full potential, engineering educators must be successful in integrating leadership into the very identity of engineers. This study seeks to better understand the relationship between engineering identity and leadership, so tools can be developed that enable engineering educators to more effectively integrate leadership into an engineering identity. This paper explores this relationship using a national sample of 918 engineering students who participated in the 2013 College Senior Survey (CSS). The CSS is administered by the Higher Education Research Institute (HERI) at UCLA to college students at the end of their fourth year of college; data from the CSS are then matched to students’ prior responses on the 2009 Freshman Survey (TFS), which was administered when they first started college, to create a longitudinal sample. Using a leadership construct developed by HERI as the outcome variable, this work utilizes Hierarchical Linear Modelling (HLM) to examine the impact of engineering identity and a host of other factors shown to be important in college student development on leadership. HLM is especially appropriate since individual student cases are grouped by schools, and predictor variables include both student-level and institution-level variables. The leadership construct, referred to as leadership self-efficacy in this work, includes self-rated growth in leadership ability, self-rating of leadership ability relative to one’s peers, participation in a leadership role and/or leadership training, and perceived effectiveness leading an organization. The primary independent variable of interest was a factor measuring engineering identity comprised of items available on both the TFS and CSS instruments. Including this measure of engineering identity from two different time periods in the model provides the relationship between engineering identity in the fourth year and leadership self-efficacy, controlling for engineering identity in the first year as a pretest. Statistically significant results were found across each of the areas tested, including the fourth-year engineering identity factor as well as several collegiate experiences, pre-college experiences, major, and institutional variables. Taken together, these results present a nuanced picture of what matters to predicting leadership outcomes for undergraduate engineering students. For example, while engineering identity is a significant positive predictor of the leadership construct, computer engineers score lower than mechanical engineers on leadership, while interacting with faculty appears to enhance leadership self-efficacy. 
    more » « less
  3. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  4. Student success in educational ecosystems is a primary goal of leadership efforts. Yet, power and privilege affect the racial, classist, and gendered implications of STEM education work in K-12 education as well as higher education. Interventions have been done at various levels, but despite the hard work of implementation, this has not resulted in dramatic improvements to STEM educational ecosystems or student engagement within them. Often, these implementations are done at the faculty/student level or institutional level but not at the departmental leadership level. The NSF-supported Eco-STEM Project proposes to establish a healthy educational ecosystem that supports all individuals (students, faculty, and staff) to thrive. Project activities are guided by ecosystem paradigm measures that support a culturally responsive learning/working environment; make teaching and learning rewarding and fulfilling; and emphasize community assets to enhance motivation, excellence, and success. For this work-in-progress paper, we describe the development of a leadership community of practice, comprised of department chairs of science and engineering departments, at [university name redacted], a large state-funded comprehensive majority minority master’s granting institution in the Southwest United States. In the year-long Leadership Community of Practice (L-CoP), the Fellows work on unpacking issues of power and privilege in their roles as STEM leaders and educators. During the Fall semester of 2022, the Fellows participated in four sessions. They engaged in readings, videos, active-learning activities, and critically reflective dialogues to facilitate discussion and reflection on identity, agency, the culture of power in STEM, and interventions and change in higher education. The L-CoP starts with Fellows reflecting on their social and professional identities and how their identities influence their teaching and leadership philosophies. Then Fellows are introduced to the framework of the culture of power in science--where they explore the social, cultural, and political impacts of preparing for a STEM college education. Finally, they explore theories and models of change for STEM higher education spaces. Through this curriculum, we aim to examine mental models to deconstruct notions that uphold the culture of power in science by instead building counternarratives with faculty and students in their departments. Through dialogues within the L-CoP, leaders discuss classroom/program climate, structure, and vibrancy to better support healthy educational ecosystems, as well as their participation in these systems. We are currently in the middle of our first implementation of the L-CoP. The first cohort consists of six L-CoP Fellows with highly diverse positionalities; there is racial, ethnic, and gender diversity, and all Fellows are full professors in the tenure line and chairs of their respective departments. We present details of the L-CoP, including the formation of the Fellow cohort, training of the facilitators, structure of the sessions, and initial results of our mid-program survey. The survey results provide insights into potential improvements to our tools and program. We also share some of the Fellows’ and facilitators’ reflections demonstrating a shift toward an ecosystem mindset. We prefer to present this work as a poster at the 2023 ASEE Annual Conference. 
    more » « less
  5. Who and by what means do we ensure that engineering education evolves to meet the ever changing needs of our society? This and other papers presented by our research team at this conference offer our initial set of findings from an NSF sponsored collaborative study on engineering education reform. Organized around the notion of higher education governance and the practice of educational reform, our open-ended study is based on conducting semi-structured interviews at over three dozen universities and engineering professional societies and organizations, along with a handful of scholars engaged in engineering education research. Organized as a multi-site, multi-scale study, our goal is to document differences in perspectives and interest the exist across organizational levels and institutions, and to describe the coordination that occurs (or fails to occur) in engineering education given the distributed structure of the engineering profession. This paper offers for all engineering educators and administrators a qualitative and retrospective analysis of ABET EC 2000 and its implementation. The paper opens with a historical background on the Engineers Council for Professional Development (ECPD) and engineering accreditation; the rise of quantitative standards during the 1950s as a result of the push to implement an engineering science curriculum appropriate to the Cold War era; EC 2000 and its call for greater emphasis on professional skill sets amidst concerns about US manufacturing productivity and national competitiveness; the development of outcomes assessment and its implementation; and the successive negotiations about assessment practice and the training of both of program evaluators and assessment coordinators for the degree programs undergoing evaluation. It was these negotiations and the evolving practice of assessment that resulted in the latest set of changes in ABET engineering accreditation criteria (“1-7” versus “a-k”). To provide an insight into the origins of EC 2000, the “Gang of Six,” consisting of a group of individuals loyal to ABET who used the pressure exerted by external organizations, along with a shared rhetoric of national competitiveness to forge a common vision organized around the expanded emphasis on professional skill sets. It was also significant that the Gang of Six was aware of the fact that the regional accreditation agencies were already contemplating a shift towards outcomes assessment; several also had a background in industrial engineering. However, this resulted in an assessment protocol for EC 2000 that remained ambiguous about whether the stated learning outcomes (Criterion 3) was something faculty had to demonstrate for all of their students, or whether EC 2000’s main emphasis was continuous improvement. When it proved difficult to demonstrate learning outcomes on the part of all students, ABET itself began to place greater emphasis on total quality management and continuous process improvement (TQM/CPI). This gave institutions an opening to begin using increasingly limited and proximate measures for the “a-k” student outcomes as evidence of effort and improvement. In what social scientific terms would be described as “tactical” resistance to perceived oppressive structures, this enabled ABET coordinators and the faculty in charge of degree programs, many of whom had their own internal improvement processes, to begin referring to the a-k criteria as “difficult to achieve” and “ambiguous,” which they sometimes were. Inconsistencies in evaluation outcomes enabled those most discontented with the a-k student outcomes to use ABET’s own organizational processes to drive the latest revisions to EAC accreditation criteria, although the organization’s own process for member and stakeholder input ultimately restored much of the professional skill sets found in the original EC 2000 criteria. Other refinements were also made to the standard, including a new emphasis on diversity. This said, many within our interview population believe that EC 2000 had already achieved much of the changes it set out to achieve, especially with regards to broader professional skills such as communication, teamwork, and design. Regular faculty review of curricula is now also a more routine part of the engineering education landscape. While programs vary in their engagement with ABET, there are many who are skeptical about whether the new criteria will produce further improvements to their programs, with many arguing that their own internal processes are now the primary drivers for change. 
    more » « less