skip to main content


Title: Understanding the Perceived Impact of Engineers’ Leadership Experiences in College
In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts—they must also be technical leaders. Greater numbers of engineering educators are recognizing this need and establishing engineering leadership certificates and minors through centers at universities throughout the country. While the implementation of these offerings is a step forward, most programs tend to focus on leadership as a set of skills or experiences bolted onto a traditional engineering education with limited formal evidence of the impact these experiences have on student development. The purpose of this study is to test the effect of experiences engineering students have in leadership roles on their perceived gains in leadership skills, using a national dataset. The framework guiding this study is a model for engineering leadership identity constructed from Lave and Wenger’s communities of practice model and Komives et al.’s model for leadership identity development (LID) which recognizes that the engineering formation process is, at its core, an identity development process. Engineering leadership is theorized to develop from peripheral participation in engineering communities of practice in ways that promote students’ leadership development. Specifically, undertaking leadership roles in curricular and co-curricular engineering activities develops students’ sense of engineering leadership identity, which results in their recognition of gains in different leadership skills. The data for this study come from the 2015 administration of the National Survey of Student Engagement (NSSE), overseen by the Center for Postsecondary Research at Indiana University. The NSSE is administered to a random sample of first- and fourth-year students, and focuses on curricular and co-curricular student engagement. In 2015, NSSE included a pilot module to assess leadership experiences at 21 participating institutions. The overall sample includes 2607 students who held a leadership role, among whom are 90 engineering students. The dependent variables for this study are a set of eight items prompting students to indicate the extent to which participation in a leadership role contributed to development of different leadership skills. This study employs multiple regression to test the relationships among leadership related experiences and eight leadership skill outcomes for engineering students. Significant results across the eight regression models paint a complex portrait regarding factors that affect gains in leadership skills for engineering students. For example, receiving formal leadership training is a significant positive predictor of only three of the leadership outcomes explored in this work: thinking critically and analytically, working effectively with others, and continuing leadership after college. These results can be utilized by educators engaged in Engineering Leadership education to tailor their program experiences and better achieve the desired educational outcomes.  more » « less
Award ID(s):
1664231
NSF-PAR ID:
10089860
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE annual conference & exposition
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts, they must also be technical leaders. Thankfully, greater numbers of engineering educators are recognizing this need and are consequently establishing engineering leadership certificates, minors, and even full degree programs through centers at universities throughout the country. However, for these programs to reach their full potential, engineering educators must be successful in integrating leadership into the very identity of engineers. This study seeks to better understand the relationship between engineering identity and leadership, so tools can be developed that enable engineering educators to more effectively integrate leadership into an engineering identity. This paper explores this relationship using a national sample of 918 engineering students who participated in the 2013 College Senior Survey (CSS). The CSS is administered by the Higher Education Research Institute (HERI) at UCLA to college students at the end of their fourth year of college; data from the CSS are then matched to students’ prior responses on the 2009 Freshman Survey (TFS), which was administered when they first started college, to create a longitudinal sample. Using a leadership construct developed by HERI as the outcome variable, this work utilizes Hierarchical Linear Modelling (HLM) to examine the impact of engineering identity and a host of other factors shown to be important in college student development on leadership. HLM is especially appropriate since individual student cases are grouped by schools, and predictor variables include both student-level and institution-level variables. The leadership construct, referred to as leadership self-efficacy in this work, includes self-rated growth in leadership ability, self-rating of leadership ability relative to one’s peers, participation in a leadership role and/or leadership training, and perceived effectiveness leading an organization. The primary independent variable of interest was a factor measuring engineering identity comprised of items available on both the TFS and CSS instruments. Including this measure of engineering identity from two different time periods in the model provides the relationship between engineering identity in the fourth year and leadership self-efficacy, controlling for engineering identity in the first year as a pretest. Statistically significant results were found across each of the areas tested, including the fourth-year engineering identity factor as well as several collegiate experiences, pre-college experiences, major, and institutional variables. Taken together, these results present a nuanced picture of what matters to predicting leadership outcomes for undergraduate engineering students. For example, while engineering identity is a significant positive predictor of the leadership construct, computer engineers score lower than mechanical engineers on leadership, while interacting with faculty appears to enhance leadership self-efficacy. 
    more » « less
  2. Co-curricular team projects in engineering – like design projects, experimental assignments, or national project-based competitions or challenges – can be key experiences for students in forming personal and professional skills and traits. Little concrete data is available about why students choose to participate or not participate in such activities though, and how their participation and perceptions of the activities may be influenced by factors such as their gender identity, race/ethnicity, and other facets of themselves and their experiences. Without this data, it is difficult to conceive of strategies to improve participation in certain activities among groups of people who are otherwise under-represented compared even to their representation at the College level. The research was devised to gather insight into why students chose to participate or not participate, and what they felt the benefits and detrimental effects of participation were. The pilot study was conducted at the Cal Poly San Luis Obispo campus, which is part of the California State University system - it has a student cohort that is not particularly diverse compared to the rest of the system or highly representative of state demographics, and it has an institutional focus on applied, hands- on learning that means that a high number of students participate in co-curricular engineering projects. A 70 question survey tool, adapted from an existing tool, garnered responses from nearly 500 students, with demographic and identity questions preceding sections about factors that led to participation or non- participation, and then perceptions of positive and negative outcomes that can come from involvement in co-curricular engineering projects. 
    more » « less
  3. The purpose of this work in progress research paper is to examine the differences in leadership self-efficacy among engineering undergraduates and their peers in other fields, and understand how leadership self-concept changes from the first through the fourth year of college. This study conceptualizes engineering formation as a professional identity development process, cultivated through participation in engineering communities of practice. The guiding hypothesis is that experiences that contribute to engineering identity, which focus on the development of technical mastery, conflict with the development of leadership self-concept. This work presents preliminary analysis of the differences between engineering undergraduates and their peers with regard to their leadership experiences during college. Preliminary results reveal a complex picture of the differences between engineering students and their peers in other STEM and non-STEM fields. Engineering students have the highest leadership self-efficacy of all three groups by the end of the fourth year of college, which mirrors differences in self-rated leadership skills at college entry. However, differences in leadership experiences during college vary among these three groups, and not consistently with their leadership self-efficacy. Engineers are least likely to participate in a leadership training during college and to value becoming a leader after college. Among engineering students, students who participate in internships, undergraduate research, and collaborate with peers report higher leadership. Leadership is unrelated to plans to enter engineering as a career. 
    more » « less
  4. Engineering identity development is crucial for engineers’ professional performance, personal fulfillment, and organization’s success. Various factors including recognition by others, interest, and competence can affect the development of engineering identity. Participation in engineering-related activities, such as involvement in makerspaces, can lead to increases in engineering self-efficacy and can provide opportunities for students’ to be recognized as engineers, potentially promoting the development of their engineering identity. However, participation in makerspaces is not necessarily equal across all student groups, with the potential for white, man-dominated cultures of engineering to be replicated in makerspaces, preventing students from marginalized groups from feeling welcome or participating. Earning microcredentials and digital badges in makerspaces has the potential to encourage participation and provide a means for recognition. The goal of this two-year project (funded by NSF’s PFE: Research Initiation in Engineering Formation program) is to study engineering students’ engineering identity development and how makerspaces and digital badges can contribute to this development process. Towards this goal, we interviewed a diverse cohort of eight first-year engineering students at a large, land-grant, Hispanic-Serving Institution in the U.S. during the Fall 2022 semester. Students participated in two one-hour interviews at the start and end of the semester on topics including their making skills, experiences in the makerspace, participation level in groups, perceived recognition as engineers, and feeling of belongingness in the engineering community and makerspaces. This paper presents lessons-learned from the interview implementation process, including dealing with disruptions from the ongoing pandemic and traumatic campus events. We also present emerging themes from qualitative analysis of the interviews. We expect the implications of this work to guide instructors and administrators in developing more motivating and interactive engineering courses and makerspace experiences for diverse students. 
    more » « less
  5. Taylor, O. ; Campone, F. ; Retland, N. (Ed.)
    This year-long leadership development program was designed to enhance the cognitive, affective, and behavioral dimensions of leadership self-efficacy of HBCU STEM leaders to broaden the participation of African American undergraduates in STEM. Learning outcomes guided the development of curricular resources including on-line learning, multi-day residencies, individual leadership assessment, and an action learning project. Mixed-method evaluation showed significant gains on all learning outcomes, with the highest post-test ratings in application of leadership skills, leading faculty in STEM teaching strategies, leading instructional innovation, developing programs for broadening participation in STEM, and increasing campus awareness of national challenges related to STEM. 
    more » « less