For a graph G on n vertices, naively sampling the position of a random walk of at time t requires work Ω(t). We desire local access algorithms supporting positionG(t) queries, which return the position of a random walk from some fixed start vertex s at time t, where the joint distribution of returned positions is 1/ poly(n) close to those of a uniformly random walk in ℓ1 distance. We first give an algorithm for local access to random walks on a given undirected d-regular graph with eO( 1 1−λ √ n) runtime per query, where λ is the second-largest eigenvalue of the random walk matrix of the graph in absolute value. Since random d-regular graphs G(n, d) are expanders with high probability, this gives an eO(√ n) algorithm for a graph drawn from G(n, d) whp, which improves on the naive method for small numbers of queries. We then prove that no algorithm with subconstant error given probe access to an input d-regular graph can have runtime better than Ω(√ n/ log(n)) per query in expectation when the input graph is drawn from G(n, d), obtaining a nearly matching lower bound. We further show an Ω(n1/4) runtime per query lower bound even with an oblivious adversary (i.e. when the query sequence is fixed in advance). We then show that for families of graphs with additional group theoretic structure, dramatically better results can be achieved. We give local access to walks on small-degree abelian Cayley graphs, including cycles and hypercubes, with runtime polylog(n) per query. This also allows for efficient local access to walks on polylog degree expanders. We show that our techniques apply to graphs with high degree by extending or results to graphs constructed using the tensor product (giving fast local access to walks on degree nϵ graphs for any ϵ ∈ (0, 1]) and Cartesian product. 
                        more » 
                        « less   
                    
                            
                            On the trace of random walks on random graphs
                        
                    
    
            We study graph-theoretic properties of the trace of a random walk on a random graph. We show that for any $$\varepsilon>0$$ there exists $C>1$ such that the trace of the simple random walk of length $$(1+\varepsilon)n\ln{n}$$ on the random graph $$G\sim\gnp$$ for $$p>C\ln{n}/n$$ is, with high probability, Hamiltonian and $$\Theta(\ln{n})$$-connected. In the special case $p=1$$ (i.e.\ when $$G=K_n$), we show a hitting time result according to which, with high probability, exactly one step after the last vertex has been visited, the trace becomes Hamiltonian, and one step after the last vertex has been visited for the $$k$$'th time, the trace becomes $2k$-connected. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1661063
- PAR ID:
- 10054179
- Date Published:
- Journal Name:
- Journal of the London Mathematical Society
- ISSN:
- 1469-7750
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We study the mixing time of a random walk on the torus, alternated with a Lebesgue measure preserving Bernoulli map. Without the Bernoulli map, the mixing time of the random walk alone is $$O(1/\epsilon^2)$$, where $$\epsilon$$ is the step size. Our main results show that for a class of Bernoulli maps, when the random walk is alternated with the Bernoulli map~$$\varphi$$ the mixing time becomes $$O(\abs{\ln \epsilon})$$. We also study the \emph{dissipation time} of this process, and obtain~$$O(\abs{\ln \epsilon})$$ upper and lower bounds with explicit constants.more » « less
- 
            We consider diffusivity of random walks with transition probabilities depending on the number of consecutive traversals of the last traversed edge, the so called senile reinforced random walk (SeRW). In one dimension, the walk is known to be sub-diffusive with identity reinforcement function. We perturb the model by introducing a small probability δ of escaping the last traversed edge at each step. The perturbed SeRW model is diffusive for any δ > 0 , with enhanced diffusivity (≫ O ( δ^2 ) ) in the small δ regime. We further study stochastically perturbed SeRW models by having the last edge escape probability of the form δ ξ n with ξ n ’s being independent random variables. Enhanced diffusivity in such models are logarithmically close to the so called residual diffusivity (positive in the zero δ limit), with diffusivity between O ( 1/| log δ | ) and O ( 1/ log | log δ | ) . Finally, we generalize our results to higher dimensions where the unperturbed model is already diffusive. The enhanced diffusivity can be as much as O ( 1/log ^2 δ )more » « less
- 
            Chakrabarti, Amit; Swamy, Chaitanya (Ed.)We consider the problem of sampling from the ferromagnetic Potts and random-cluster models on a general family of random graphs via the Glauber dynamics for the random-cluster model. The random-cluster model is parametrized by an edge probability p ∈ (0,1) and a cluster weight q > 0. We establish that for every q ≥ 1, the random-cluster Glauber dynamics mixes in optimal Θ(nlog n) steps on n-vertex random graphs having a prescribed degree sequence with bounded average branching γ throughout the full high-temperature uniqueness regime p < p_u(q,γ). The family of random graph models we consider includes the Erdős-Rényi random graph G(n,γ/n), and so we provide the first polynomial-time sampling algorithm for the ferromagnetic Potts model on Erdős-Rényi random graphs for the full tree uniqueness regime. We accompany our results with mixing time lower bounds (exponential in the largest degree) for the Potts Glauber dynamics, in the same settings where our Θ(n log n) bounds for the random-cluster Glauber dynamics apply. This reveals a novel and significant computational advantage of random-cluster based algorithms for sampling from the Potts model at high temperatures.more » « less
- 
            Abstract Recently, Dvořák, Norin, and Postle introduced flexibility as an extension of list coloring on graphs (J Graph Theory 92(3):191–206, 2019, https://doi.org/10.1002/jgt.22447 ). In this new setting, each vertex v in some subset of V ( G ) has a request for a certain color r ( v ) in its list of colors L ( v ). The goal is to find an L coloring satisfying many, but not necessarily all, of the requests. The main studied question is whether there exists a universal constant $$\varepsilon >0$$ ε > 0 such that any graph G in some graph class $$\mathscr {C}$$ C satisfies at least $$\varepsilon$$ ε proportion of the requests. More formally, for $$k > 0$$ k > 0 the goal is to prove that for any graph $$G \in \mathscr {C}$$ G ∈ C on vertex set V , with any list assignment L of size k for each vertex, and for every $$R \subseteq V$$ R ⊆ V and a request vector $$(r(v): v\in R, ~r(v) \in L(v))$$ ( r ( v ) : v ∈ R , r ( v ) ∈ L ( v ) ) , there exists an L -coloring of G satisfying at least $$\varepsilon |R|$$ ε | R | requests. If this is true, then $$\mathscr {C}$$ C is called $$\varepsilon$$ ε - flexible for lists of size k . Choi, Clemen, Ferrara, Horn, Ma, and Masařík (Discrete Appl Math 306:20–132, 2022, https://doi.org/10.1016/j.dam.2021.09.021 ) introduced the notion of weak flexibility , where $$R = V$$ R = V . We further develop this direction by introducing a tool to handle weak flexibility. We demonstrate this new tool by showing that for every positive integer b there exists $$\varepsilon (b)>0$$ ε ( b ) > 0 so that the class of planar graphs without $$K_4, C_5 , C_6 , C_7, B_b$$ K 4 , C 5 , C 6 , C 7 , B b is weakly $$\varepsilon (b)$$ ε ( b ) -flexible for lists of size 4 (here $$K_n$$ K n , $$C_n$$ C n and $$B_n$$ B n are the complete graph, a cycle, and a book on n vertices, respectively). We also show that the class of planar graphs without $$K_4, C_5 , C_6 , C_7, B_5$$ K 4 , C 5 , C 6 , C 7 , B 5 is $$\varepsilon$$ ε -flexible for lists of size 4. The results are tight as these graph classes are not even 3-colorable.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    