skip to main content

Title: Enhanced diffusivity in perturbed senile reinforced random walk models
We consider diffusivity of random walks with transition probabilities depending on the number of consecutive traversals of the last traversed edge, the so called senile reinforced random walk (SeRW). In one dimension, the walk is known to be sub-diffusive with identity reinforcement function. We perturb the model by introducing a small probability δ of escaping the last traversed edge at each step. The perturbed SeRW model is diffusive for any δ > 0 , with enhanced diffusivity (≫ O ( δ^2 ) ) in the small δ regime. We further study stochastically perturbed SeRW models by having the last edge escape probability of the form δ ξ n with ξ n ’s being independent random variables. Enhanced diffusivity in such models are logarithmically close to the so called residual diffusivity (positive in the zero δ limit), with diffusivity between O ( 1/| log δ | ) and O ( 1/ log | log δ | ) . Finally, we generalize our results to higher dimensions where the unperturbed model is already diffusive. The enhanced diffusivity can be as much as O ( 1/log ^2 δ )
Award ID(s):
Publication Date:
Journal Name:
Asymptotic analysis
Sponsoring Org:
National Science Foundation
More Like this
  1. Consider an algorithm performing a computation on a huge random object (for example a random graph or a "long" random walk). Is it necessary to generate the entire object prior to the computation, or is it possible to provide query access to the object and sample it incrementally "on-the-fly" (as requested by the algorithm)? Such an implementation should emulate the random object by answering queries in a manner consistent with an instance of the random object sampled from the true distribution (or close to it). This paradigm is useful when the algorithm is sub-linear and thus, sampling the entire object up front would ruin its efficiency. Our first set of results focus on undirected graphs with independent edge probabilities, i.e. each edge is chosen as an independent Bernoulli random variable. We provide a general implementation for this model under certain assumptions. Then, we use this to obtain the first efficient local implementations for the Erdös-Rényi G(n,p) model for all values of p, and the Stochastic Block model. As in previous local-access implementations for random graphs, we support Vertex-Pair and Next-Neighbor queries. In addition, we introduce a new Random-Neighbor query. Next, we give the first local-access implementation for All-Neighbors queries inmore »the (sparse and directed) Kleinberg’s Small-World model. Our implementations require no pre-processing time, and answer each query using O(poly(log n)) time, random bits, and additional space. Next, we show how to implement random Catalan objects, specifically focusing on Dyck paths (balanced random walks on the integer line that are always non-negative). Here, we support Height queries to find the location of the walk, and First-Return queries to find the time when the walk returns to a specified location. This in turn can be used to implement Next-Neighbor queries on random rooted ordered trees, and Matching-Bracket queries on random well bracketed expressions (the Dyck language). Finally, we introduce two features to define a new model that: (1) allows multiple independent (and even simultaneous) instantiations of the same implementation, to be consistent with each other without the need for communication, (2) allows us to generate a richer class of random objects that do not have a succinct description. Specifically, we study uniformly random valid q-colorings of an input graph G with maximum degree Δ. This is in contrast to prior work in the area, where the relevant random objects are defined as a distribution with O(1) parameters (for example, n and p in the G(n,p) model). The distribution over valid colorings is instead specified via a "huge" input (the underlying graph G), that is far too large to be read by a sub-linear time algorithm. Instead, our implementation accesses G through local neighborhood probes, and is able to answer queries to the color of any given vertex in sub-linear time for q ≥ 9Δ, in a manner that is consistent with a specific random valid coloring of G. Furthermore, the implementation is memory-less, and can maintain consistency with non-communicating copies of itself.« less
  2. We present an algorithm that, with high probability, generates a random spanning tree from an edge-weighted undirected graph in \Otil(n^{5/3 }m^{1/3}) time\footnote{The \Otil(\cdot) notation hides \poly(\log n) factors}. The tree is sampled from a distribution where the probability of each tree is proportional to the product of its edge weights. This improves upon the previous best algorithm due to Colbourn et al. that runs in matrix multiplication time, O(n^\omega). For the special case of unweighted graphs, this improves upon the best previously known running time of \tilde{O}(\min\{n^{\omega},m\sqrt{n},m^{4/3}\}) for m >> n^{7/4} (Colbourn et al. '96, Kelner-Madry '09, Madry et al. '15). The effective resistance metric is essential to our algorithm, as in the work of Madry et al., but we eschew determinant-based and random walk-based techniques used by previous algorithms. Instead, our algorithm is based on Gaussian elimination, and the fact that effective resistance is preserved in the graph resulting from eliminating a subset of vertices (called a Schur complement). As part of our algorithm, we show how to compute \eps-approximate effective resistances for a set SS of vertex pairs via approximate Schur complements in \Otil(m+(n + |S|)\eps^{-2}) time, without using the Johnson-Lindenstrauss lemma which requires \Otil( \min\{(m + |S|)\eps^{-2},more »m+n\eps^{-4} +|S|\eps^{-2}\}) time. We combine this approximation procedure with an error correction procedure for handing edges where our estimate isn't sufficiently accurate.« less
  3. Abstract Community detection is considered for a stochastic block model graph of n vertices, with K vertices in the planted community, edge probability p for pairs of vertices both in the community, and edge probability q for other pairs of vertices. The main focus of the paper is on weak recovery of the community based on the graph G , with o ( K ) misclassified vertices on average, in the sublinear regime n 1- o (1) ≤ K ≤ o ( n ). A critical parameter is the effective signal-to-noise ratio λ = K 2 ( p - q ) 2 / (( n - K ) q ), with λ = 1 corresponding to the Kesten–Stigum threshold. We show that a belief propagation (BP) algorithm achieves weak recovery if λ > 1 / e, beyond the Kesten–Stigum threshold by a factor of 1 / e. The BP algorithm only needs to run for log * n + O (1) iterations, with the total time complexity O (| E |log * n ), where log * n is the iterated logarithm of n . Conversely, if λ ≤ 1 / e, no local algorithm can asymptotically outperform trivial randommore »guessing. Furthermore, a linear message-passing algorithm that corresponds to applying a power iteration to the nonbacktracking matrix of the graph is shown to attain weak recovery if and only if λ > 1. In addition, the BP algorithm can be combined with a linear-time voting procedure to achieve the information limit of exact recovery (correctly classify all vertices with high probability) for all K ≥ ( n / log n ) (ρ BP + o (1)), where ρ BP is a function of p / q .« less
  4. Winner-take-all (WTA) refers to the neural operation that selects a (typically small) group of neurons from a large neuron pool. It is conjectured to underlie many of the brain’s fundamental computational abilities. However, not much is known about the robustness of a spike-based WTA network to the inherent randomness of the input spike trains.In this work, we consider a spike-based k–WTA model wherein n randomly generated input spike trains compete with each other based on their underlying firing rates and k winners are supposed to be selected. We slot the time evenly with each time slot of length 1 ms and model then input spike trains as n independent Bernoulli processes. We analytically characterize the minimum waiting time needed so that a target minimax decision accuracy (success probability) can be reached. We first derive an information-theoretic lower bound on the waiting time. We show that to guarantee a (minimax) decision error≤δ(whereδ∈(0,1)), the waiting time of any WTA circuit is at least ((1−δ)log(k(n−k)+1)−1)TR,where R⊆(0,1)is a finite set of rates and TR is a difficulty parameter of a WTA task with respect to set R for independent input spike trains. Additionally,TR is independent of δ,n,and k. We then design a simple WTAmore »circuit whose waiting time is 2524L. Su, C.-J. Chang, and N. Lynch O((log(1δ)+logk(n−k))TR),provided that the local memory of each output neuron is sufficiently long. It turns out that for any fixed δ, this decision time is order-optimal (i.e., it matches the above lower bound up to a multiplicative constant factor) in terms of its scaling inn,k, and TR.« less
  5. We present new constructions of pseudorandom generators (PRGs) for two of the most widely studied non-uniform circuit classes in complexity theory. Our main result is a construction of the first non-trivial PRG for linear threshold (LTF) circuits of arbitrary constant depth and super-linear size. This PRG fools circuits with depth d∈N and n1+δ wires, where δ=2−O(d) , using seed length O(n1−δ) and with error 2−nδ . This tightly matches the best known lower bounds for this circuit class. As a consequence of our result, all the known hardness for LTF circuits has now effectively been translated into pseudorandomness. This brings the extensive effort in the last decade to construct PRGs and deterministic circuit-analysis algorithms for this class to the point where any subsequent improvement would yield breakthrough lower bounds. Our second contribution is a PRG for De Morgan formulas of size s whose seed length is s1/3+o(1)⋅polylog(1/ϵ) for error ϵ . In particular, our PRG can fool formulas of sub-cubic size s=n3−Ω(1) with an exponentially small error ϵ=exp(−nΩ(1)) . This significantly improves the inverse-polynomial error of the previous state-of-the-art for such formulas by Impagliazzo, Meka, and Zuckerman (FOCS 2012, JACM 2019), and again tightly matches the best currently-known lower boundsmore »for this class. In both settings, a key ingredient in our constructions is a pseudorandom restriction procedure that has tiny failure probability, but simplifies the function to a non-natural “hybrid computational model” that combines several computational models.« less