skip to main content


Title: Distributed Current Source Method for Modeling Magnetic and Eddy-Current Fields Induced in Non-Ferrous Metallic Objects
This paper presents a new modeling method to determine the harmonic eddy-current (EC) field induced in a non-ferrous metal and its corresponding magnetic flux density (MFD) by an EC-based sensing system for geometrical measurements, which accounts for the boundary effects of the object. Modeled using a distributed current source (DCS) method in state-space representation, the EC field is formulated as a two-step constrained least-square (CLS) problem to solve for its real and imaginary parts. Two practical techniques to improve the efficiency and accuracy of the EC solutions are illustrated; the first refines the DCS distribution based on the skin-depth effects, and the second takes advantages of commercial mesh-generation software to facilitate the modeling of EC induced in complex shaped objects. The DCS-based EC models are verified numerically by comparing computed results with 2D analytical axisymmetric solutions and commercial finite-element analysis (FEA), and evaluated experimentally with an EC sensor that measures the MFD generated by the induced EC in different materials and geometrical configurations.  more » « less
Award ID(s):
1662700
NSF-PAR ID:
10054245
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE/ASME Transactions on Mechatronics
ISSN:
1083-4435
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a distributed current source (DCS) method for modeling the dynamic responses of eddy current density (ECD) induced in electrical conductors and its corresponding magnetic flux density (MFD); both nonmagnetic and weakly magnetized conductors are considered. Unlike conventional numerical methods such as finite element analysis (FEA), the DCS method, which accounts for the eddy-current and magnetization effects by means of equivalent volume and surface current-sources, derives closed-form solutions to the ECD and MFD fields in state-space representation. The model has been experimentally validated and verified by comparing results from FEA simulations with both harmonic and nonharmonic excitations. To gain physical insights to the measured MFD for simultaneous estimating the material/geometrical properties of a conductor, the static and dynamic responses to rectangular pulsed current excitations have been numerically investigated, confirming the feasibility and effectiveness of the measurement methods.

     
    more » « less
  2. The ability of Additive Manufacturing (AM) processes to ensure delivery of high quality metal-based components is somewhat limited by insufficient inspection capabilities. The inspection of AM parts presents particular challenges due to the design flexibility that the fabrication method affords. The nondestructive evaluation (NDE) methods employed need to be selected based on the material properties, type of possible defects, and geometry of the parts. Electromagnetic method, in particular Eddy Current (EC), is proposed for the inspections. This evaluation of EC inspection considers surface and near-surface defects in a stainless steel (SS) 17 4 PH additively manufactured sample and a SS 17 4 PH annealed plates manufactured traditionally (reference sample). The surfaces of the samples were polished using 1 micron polishing Alumina grit to achieve a mirror like surface finish. 1.02 mm (0.04”), 0.508 mm (0.02”) and 0.203 mm (0.008”) deep Electronic Discharge Machining (EDM) notches were created on the polished surface of the samples. Lift off and defect responses for both additive and reference samples were obtained using a VMEC-1 commercial instrument and a 500 kHz absolute probe. The inspection results as well as conductivity assessments for the AM sample in terms of the impedance plane signature were compared to response of similar features in the reference sample. Direct measurement of electromagnetic properties of the AM samples is required for precise inspection of the parts. Results show that quantitative comparison of the AM and traditional materials help for the development of EC technology for inspection of additively manufactured metal parts. 
    more » « less
  3. Abstract The practice of commissioning data centers (DCs) is necessary to confirm the compliance of the cooling system to the information technology equipment (ITE) load (design capacity). In a typical DC, there are different types of ITE, each having its physical characteristics. Considering these geometrical and internal differences among ITE, it is infeasible to use the actual ITE as a self-simulator. Hence, a separate device called load bank is employed for that purpose. Load banks create a dummy thermal load to analyze, test, and stress the cooling infrastructure. Available commercial load banks do not accurately replicate a server's airflow patterns and transient heat signatures which are governed by thermal inertia, energy dissipation, flow resistance, and fan system behavior. In this study, a novel prototype of the server called server simulator was designed and built with different components to be used as a server mockup. The server simulator accurately captured air resistance, heat dissipation, and the functionality of actual server behavior. Experimental data showed up to 93% improvement in ITE passive and active flow curves using the designed server simulator compared to the commercial load bank. Furthermore, the experimental results demonstrated a below 5% discrepancy on the critical back pressure and free delivery point between the actual ITE and the designed server simulator. In addition, experimental data indicated that the developed server simulator improved the actual ITE thermal mass by 27% compared to the commercial load bank. 
    more » « less
  4. Introduction Bi-directional brain-computer interfaces (BD-BCI) to restore movement and sensation must achieve concurrent operation of recording and decoding of motor commands from the brain and stimulating the brain with somatosensory feedback. Methods A custom programmable direct cortical stimulator (DCS) capable of eliciting artificial sensorimotor response was integrated into an embedded BCI system to form a safe, independent, wireless, and battery powered testbed to explore BD-BCI concepts at a low cost. The BD-BCI stimulator output was tested in phantom brain tissue by assessing its ability to deliver electrical stimulation equivalent to an FDA-approved commercial electrical cortical stimulator. Subsequently, the stimulator was tested in an epilepsy patient with subcortical electrocorticographic (ECoG) implants covering the sensorimotor cortex to assess its ability to elicit equivalent responses as the FDA-approved counterpart. Additional safety features (impedance monitoring, artifact mitigation, and passive and active charge balancing mechanisms) were also implemeneted and tested in phantom brain tissue. Finally, concurrent operation with interleaved stimulation and BCI decoding was tested in a phantom brain as a proof-of-concept operation of BD-BCI system. Results The benchtop prototype BD-BCI stimulator's basic output features (current amplitude, pulse frequency, pulse width, train duration) were validated by demonstrating the output-equivalency to an FDA-approved commercial cortical electrical stimulator ( R 2 > 0.99). Charge-neutral stimulation was demonstrated with pulse-width modulation-based correction algorithm preventing steady state voltage deviation. Artifact mitigation achieved a 64.5% peak voltage reduction. Highly accurate impedance monitoring was achieved with R 2 > 0.99 between measured and actual impedance, which in-turn enabled accurate charge density monitoring. An online BCI decoding accuracy of 93.2% between instructional cues and decoded states was achieved while delivering interleaved stimulation. The brain stimulation mapping via ECoG grids in an epilepsy patient showed that the two stimulators elicit equivalent responses. Significance This study demonstrates clinical validation of a fully-programmable electrical stimulator, integrated into an embedded BCI system. This low-cost BD-BCI system is safe and readily applicable as a testbed for BD-BCI research. In particular, it provides an all-inclusive hardware platform that approximates the limitations in a near-future implantable BD-BCI. This successful benchtop/human validation of the programmable electrical stimulator in a BD-BCI system is a critical milestone toward fully-implantable BD-BCI systems. 
    more » « less
  5. null (Ed.)
    Network macroscopic fundamental diagrams (MFDs) have recently been shown to exist in real-world urban traffic networks. The existence of an MFD facilitates the modeling of urban traffic network dynamics at a regional level, which can be used to identify and refine large-scale network-wide control strategies. To be useful, MFD-based modeling frameworks require an estimate of the functional form of a network’s MFD. Analytical methods have been proposed to estimate a network’s MFD by abstracting the network as a single ring-road or corridor and modeling the flow–density relationship on that simplified element. However, these existing methods cannot account for the impact of turning traffic, as only a single corridor is considered. This paper proposes a method to estimate a network’s MFD when vehicles are allowed to turn into or out of a corridor. A two-ring abstraction is first used to analyze how turning will affect vehicle travel in a more general network, and then the model is further approximated using a single ring-road or corridor. This approximation is useful as it facilitates the application of existing variational theory-based methods (the stochastic method of cuts) to estimate the flow–density relationship on the corridor, while accounting for the stochastic nature of turning. Results of the approximation compared with a more realistic simulation that includes features that cannot be captured using variational theory—such as internal origins and destinations—suggest that this approximation works to estimate a network’s MFD when turning traffic is present. 
    more » « less