skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Intrinsic Constraints on Asymmetric Turbulent Transport of Scalars Within the Constant Flux Layer of the Lower Atmosphere: CONSTANT FLUX LAYER
A widely used assumption in boundary layer meteorology is the z independence of turbulent scalar fluxes Fs throughout the atmospheric surface layer, where z is the distance from the boundary. This assumption is necessary for the usage of Monin-Obukhov Similarity Theory and for the interpretation of eddy covariance measurements of Fs when using them to represent emissions or uptake from the surface. It is demonstrated here that the constant flux assumption offers intrinsic constraints on the third-order turbulent transport of Fs in the unstable atmospheric surface layer. When enforcing z independence of Fs on multilevel Fs measurements collected above different surface cover types, it is shown that increasing instability leads to a novel and universal description of (i) the imbalance between ejecting and sweeping eddy contributions to Fs and (ii) the ratio formed by a dimensionless turbulent transport of Fs and a dimensionless turbulent transport of scalar variance. When combined with structural models for the turbulent transport of Fs, these two findings offer a new perspective on “closing” triple moments beyond conventional gradient diffusion schemes. A practical outcome is a diagnostic of the constant flux assumption from single-level Fs measurements.  more » « less
Award ID(s):
1644382
PAR ID:
10054677
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geophysical Research Letters
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Turbulence parameterizations for convective boundary layer in coarse‐scale atmospheric models usually consider a combination of the eddy‐diffusive transport and a non‐local transport, typically in the form of a mass flux term, such as the widely adopted eddy‐diffusivity mass‐flux (EDMF) approach. These two types of turbulent transport are generally considered to be independent of each other. Using results from large‐eddy simulations, here, we show that a Taylor series expansion of the updraft and downdraft mass‐flux transport can be used to approximate the eddy‐diffusivity transport in the atmospheric surface layer and the lower part of the mixed layer, connecting both eddy‐diffusivity and mass‐flux transport theories in convective conditions, which also quantifies departure from the Monin‐Obukhov similarity (MOS) in the surface layer. This study provides a theoretical support for a unified EDMF parameterization applied to both the surface layer and mixed layer and highlights important correction required for surface models relying on MOS. 
    more » « less
  2. Abstract This study analyses the departure of the velocity-variances profiles from their quasi-steady state described by the mixed-layer similarity, using large-eddy simulations with different prescribed shapes and time scales of the surface kinematic heat flux decay. Within the descriptive frames where the time is tracked solely by the forcing time scale (either constant or time-dependent) describing the surface heat flux decay, we find that the normalized velocity-variances profiles from different runs do not collapse while they depart from mixed-layer similarity. As the mixed-layer similarity relies on the assumption that the free-convective boundary layer is in a quasi-equilibrium, we consider the ratios of the forcing time scales to the convective eddy-turnover time scale. We find that the normalized velocity-variances profiles collapse in the only case where the ratio ($$\widetilde{r}$$ r ~ ) of the time-dependent forcing time scale to the convective eddy-turnover time scale is used for tracking the time, supporting the independence of the departure from the characteristics of the surface heat flux decay. As a consequence of this result, the knowledge of$$\widetilde{r}$$ r ~ is sufficient to predict the departure of the velocity variances from their quasi-steady state, irrespective of the shape of the surface heat flux decay. This study highlights the importance of considering both the time-dependent forcing time scale and the convective eddy-turnover time scale for evaluating the response of the free-convective boundary layer to the surface heat flux decay. 
    more » « less
  3. Abstract How convective boundary‐layer (CBL) processes modify fluxes of sensible (SH) and latent (LH) heat and CO2(Fc) in the atmospheric surface layer (ASL) remains a recalcitrant problem. Here, large eddy simulations for the CBL show that whileSHin the ASL decreases linearly with height regardless of soil moisture conditions,LHandFcdecrease linearly with height over wet soils but increase with height over dry soils. This varying flux divergence/convergence is regulated by changes in asymmetric flux transport between top‐down and bottom‐up processes. Such flux divergence and convergence indicate that turbulent fluxes measured in the ASL underestimate and overestimate the “true” surface interfacial fluxes, respectively. While the non‐closure of the surface energy balance persists across all soil moisture states, it improves over drier soils due to overestimatedLH. The non‐closure does not imply thatFcis always underestimated;Fccan be overestimated over dry soils despite the non‐closure issue. 
    more » « less
  4. Abstract A new mixed scaling parameterZ=z/(Lh)1/2is proposed for similarity in the stable atmospheric surface layer, wherezis the height,Lis the Obukhov length, andhis the boundary layer depth. In comparison with the parameterζ=z/Lfrom Monin–Obukhov similarity theory (MOST), the new parameterZleads to improved mean profile similarity for wind speed and air temperature in large-eddy simulations. It also yields the same linear similarity relation for CASES-99 field measurements, including in the strongly stable (but still turbulent) regime where large deviations from MOST are observed. Results further suggest that similarity for turbulent energy dissipation rate depends on bothZandζ. The proposed mixed scaling ofZand relevance ofhcan be explained by physical arguments related to the limit ofz-less stratification that is reached asymptotically above the surface layer. The presented evidence and fitted similarity relations are promising, but the results and arguments are limited to a small sample of idealized stationary stable boundary layers. Corroboration is needed from independent datasets and analyses, including for complex and transient conditions not tested here. 
    more » « less
  5. null (Ed.)
    Abstract Large-eddy simulations are used to investigate the influence of a horizontal frontal zone, represented by a stationary uniform background horizontal temperature gradient, on the wind- and wave-driven ocean surface boundary layers. In a frontal zone, the temperature structure, the ageostrophic mean horizontal current, and the turbulence in the ocean surface boundary layer all change with the relative angle among the wind and the front. The net heating and cooling of the boundary layer could be explained by the depth-integrated horizontal advective buoyancy flux, called the Ekman Buoyancy Flux (or the Ekman-Stokes Buoyancy Flux if wave effects are included). However, the detailed temperature profiles are also modulated by the depth-dependent advective buoyancy flux and submesoscale eddies. The surface current is deflected less (more) to the right of the wind and wave when the depth-integrated advective buoyancy flux cools (warms) the ocean surface boundary layer. Horizontal mixing is greatly enhanced by submesoscale eddies. The eddy-induced horizontal mixing is anisotropic and is stronger to the right of the wind direction. Vertical turbulent mixing depends on the superposition of the geostrophic and ageostrophic current, the depth-dependent advective buoyancy flux, and submesoscale eddies. 
    more » « less