skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Diagnostic Human Workload Assessment Algorithm for Human-Robot Teams
High-stress environments, such as a NASA Control Room, require optimal task performance, as a single mistake may cause monetary loss or the loss of human life. Robots can partner with humans in a collaborative or supervisory paradigm. Such teaming paradigms require the robot to appropriately interact with the human without decreasing either»s task performance. Workload is directly correlated with task performance; thus, a robot may use a human»s workload state to modify its interactions with the human. A diagnostic workload assessment algorithm that accurately estimates workload using results from two evaluations, one peer-based and one supervisory-based, is presented.  more » « less
Award ID(s):
1659746
PAR ID:
10055056
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction
Page Range / eLocation ID:
123-124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Supervisory control of a humanoid robot in a manipulation task requires coordination of remote perception with robot action, which becomes more demanding with multiple moving cameras available for task supervision. We explore the use of autonomous camera control and selection to reduce operator workload and improve task performance in a supervisory control task. We design a novel approach to autonomous camera selection and control, and evaluate the approach in a user study which revealed that autonomous camera control does improve task performance and operator experience, but autonomous camera selection requires further investigation to benefit the operator’s confidence and maintain trust in the robot autonomy. 
    more » « less
  2. Human teams are able to easily perform collaborative manipulation tasks. However, simultaneously manipulating a large extended object for a robot and human is a difficult task due to the inherent ambiguity in the desired motion. Our approach in this paper is to leverage data from human-human dyad experiments to determine motion intent for a physical human-robot co-manipulation task. We do this by showing that the human-human dyad data exhibits distinct torque triggers for a lateral movement. As an alternative intent estimation method, we also develop a deep neural network based on motion data from human-human trials to predict future trajectories based on past object motion. We then show how force and motion data can be used to determine robot control in a human-robot dyad. Finally, we compare human-human dyad performance to the performance of two controllers that we developed for human-robot co-manipulation. We evaluate these controllers in three-degree-of-freedom planar motion where determining if the task involves rotation or translation is ambiguous. 
    more » « less
  3. Using the context of human-supervised object collection tasks, we explore policies for a robot to seek assistance from a human supervisor and avoid loss of human trust in the robot. We consider a human-robot interaction scenario in which a mobile manipulator chooses to collect objects either autonomously or through human assistance; while the human supervisor monitors the robot’s operation, assists when asked, or intervenes if the human perceives that the robot may not accomplish its goal. We design an optimal assistance-seeking policy for the robot using a Partially Observable Markov Decision Process (POMDP) setting in which human trust is a hidden state and the objective is to maximize collaborative performance. We conduct two sets of human-robot interaction experiments. The data from the first set of experiments is used to estimate POMDP parameters, which are used to compute an optimal assistance-seeking policy that is used in the second experiment. For most participants, the estimated POMDP reveals that humans are more likely to intervene when their trust is low and the robot is performing a high-complexity task; and that the robot asking for assistance in high-complexity tasks can increase human trust in the robot. Our experimental results show that the proposed trust-aware policy yields superior performance compared with an optimal trust-agnostic policy. 
    more » « less
  4. This article examines how people respond to robot-administered verbal and physical punishments. Human participants were tasked with sorting colored chips under time pressure and were punished by a robot when they made mistakes, such as inaccurate sorting or sorting too slowly. Participants were either punished verbally by being told to stop sorting for a fixed time, or physically, by restraining their ability to sort with an in-house crafted robotic exoskeleton. Either a human experimenter or the robot exoskeleton administered punishments, with participant task performance and subjective perceptions of their interaction with the robot recorded. The results indicate that participants made more mistakes on the task when under the threat of robot-administered punishment. Participants also tended to comply with robot-administered punishments at a lesser rate than human-administered punishments, which suggests that humans may not afford a robot the social authority to administer punishments. This study also contributes to our understanding of compliance with a robot and whether people accept a robot’s authority to punish. The results may influence the design of robots placed in authoritative roles and promote discussion of the ethical ramifications of robot-administered punishment. 
    more » « less
  5. Team member inclusion is vital in collaborative teams. In this work, we explore two strategies to increase the inclusion of human team members in a human-robot team: 1) giving a person in the group a specialized role (the 'robot liaison') and 2) having the robot verbally support human team members. In a human subjects experiment (N = 26 teams, 78 participants), groups of three participants completed two rounds of a collaborative task. In round one, two participants (ingroup) completed a task with a robot in one room, and one participant (outgroup) completed the same task with a robot in a different room. In round two, all three participants and one robot completed a second task in the same room, where one participant was designated as the robot liaison. During round two, the robot verbally supported each participant 6 times on average. Results show that participants with the robot liaison role had a lower perceived group inclusion than the other group members. Additionally, when outgroup members were the robot liaison, the group was less likely to incorporate their ideas into the group's final decision. In response to the robot's supportive utterances, outgroup members, and not ingroup members, showed an increase in the proportion of time they spent talking to the group. Our results suggest that specialized roles may hinder human team member inclusion, whereas supportive robot utterances show promise in encouraging contributions from individuals who feel excluded. 
    more » « less