skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Active Telepresence Assistance for Supervisory Control: A User Study with a Multi-Camera Tele-Nursing Robot
Supervisory control of a humanoid robot in a manipulation task requires coordination of remote perception with robot action, which becomes more demanding with multiple moving cameras available for task supervision. We explore the use of autonomous camera control and selection to reduce operator workload and improve task performance in a supervisory control task. We design a novel approach to autonomous camera selection and control, and evaluate the approach in a user study which revealed that autonomous camera control does improve task performance and operator experience, but autonomous camera selection requires further investigation to benefit the operator’s confidence and maintain trust in the robot autonomy.  more » « less
Award ID(s):
2024802
PAR ID:
10321945
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE International Conference on Robotics and Automation (ICRA)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The recent development of Robot-Assisted Minimally Invasive Surgery (RAMIS) has brought much benefit to ease the performance of complex Minimally Invasive Surgery (MIS) tasks and lead to more clinical outcomes. Compared to direct master-slave manipulation, semi-autonomous control for the surgical robot can enhance the efficiency of the operation, particularly for repetitive tasks. However, operating in a highly dynamic in-vivo environment is complex. Supervisory control functions should be included to ensure flexibility and safety during the autonomous control phase. This paper presents a haptic rendering interface to enable supervised semi-autonomous control for a surgical robot. Bayesian optimization is used to tune user-specific parameters during the surgical training process. User studies were conducted on a customized simulator for validation. Detailed comparisons are made between with and without the supervised semi-autonomous control mode in terms of the number of clutching events, task completion time, master robot end-effector trajectory and average control speed of the slave robot. The effectiveness of the Bayesian optimization is also evaluated, demonstrating that the optimized parameters can significantly improve users' performance. Results indicate that the proposed control method can reduce the operator's workload and enhance operation efficiency. 
    more » « less
  2. We explore task tolerances, i.e., allowable position or rotation inaccuracy, as an important resource to facilitate smooth and effective telemanipulation. Task tolerances provide a robot flexibility to generate smooth and feasible motions; however, in teleoperation, this flexibility may make the user’s control less direct. In this work, we implemented a telema- nipulation system that allows a robot to autonomously adjust its configuration within task tolerances. We conducted a user study comparing a telemanipulation paradigm that exploits task tolerances (functional mimicry) to a paradigm that requires the robot to exactly mimic its human operator (exact mimicry), and assess how the choice in paradigm shapes user experience and task performance. Our results show that autonomous adjustments within task tolerances can lead to performance improvements without sacrificing perceived control of the robot. Additionally, we find that users perceive the robot to be more under control, predictable, fluent, and trustworthy in functional mimicry than in exact mimicry. 
    more » « less
  3. We investigate how robotic camera systems can offer new capabilities to computer-supported cooperative work through the design, development, and evaluation of a prototype system called Periscope. With Periscope, a local worker completes manipulation tasks with guidance from a remote helper who observes the workspace through a camera mounted on a semi-autonomous robotic arm that is co-located with the worker. Our key insight is that the helper, the worker, and the robot should all share responsibility of the camera view-an approach we call shared camera control. Using this approach, we present a set of modes that distribute the control of the camera between the human collaborators and the autonomous robot depending on task needs. We demonstrate the system's utility and the promise of shared camera control through a preliminary study where 12 dyads collaboratively worked on assembly tasks. Finally, we discuss design and research implications of our work for future robotic camera systems that facilitate remote collaboration. 
    more » « less
  4. One promising approach towards effective robot decision making in complex, long-horizon tasks is to sequence together parameterized skills. We consider a setting where a robot is initially equipped with (1) a library of parameterized skills, (2) an AI planner for sequencing together the skills given a goal, and (3) a very general prior distribution for selecting skill parameters. Once deployed, the robot should rapidly and autonomously learn to improve its performance by specializing its skill parameter selection policy to the particular objects, goals, and constraints in its environment. In this work, we focus on the active learning problem of choosing which skills to practice to maximize expected future task success. We propose that the robot should estimate the competence of each skill, extrapolate the competence (asking: “how much would the competence improve through practice?”), and situate the skill in the task distribution through competence- aware planning. This approach is implemented within a fully autonomous system where the robot repeatedly plans, practices, and learns without any environment resets. Through experiments in simulation, we find that our approach learns effective pa- rameter policies more sample-efficiently than several baselines. Experiments in the real-world demonstrate our approach’s ability to handle noise from perception and control and improve the robot’s ability to solve two long-horizon mobile-manipulation tasks after a few hours of autonomous practice. Project website: http://ees.csail.mit.edu 
    more » « less
  5. High-stress environments, such as a NASA Control Room, require optimal task performance, as a single mistake may cause monetary loss or the loss of human life. Robots can partner with humans in a collaborative or supervisory paradigm. Such teaming paradigms require the robot to appropriately interact with the human without decreasing either»s task performance. Workload is directly correlated with task performance; thus, a robot may use a human»s workload state to modify its interactions with the human. A diagnostic workload assessment algorithm that accurately estimates workload using results from two evaluations, one peer-based and one supervisory-based, is presented. 
    more » « less