Parts fabricated via additive manufacturing (AM) methods are prone to experiencing high temperature gradients during manufacture resulting in internal residual stress formation. In the current study, a numerical model for predicting the temperature distribution and residual stress in Directed Energy Deposited (DED) Ti–6Al–4V parts is utilized for determining a relationship between local part temperature gradients with generated residual stress. Effects of time interval between successive layer deposits, as well as layer deposition itself, on the temperature gradient vector for the first and each layer is investigated. The numerical model is validated using thermographic measurements of Ti-6Al-4V specimens fabricated via Laser Engineered Net Shaping® (LENS), a blown-powder/laser-based DED method. Results demonstrate the heterogeneity in the part’s spatiotemporal temperature field, and support the fact that as the part number, or single part size or geometry, vary, the resultant residual stress due to temperature gradients will be impacted. As the time inter-layer time interval increases from 0 to 10 second, the temperature gradient magnitude in vicinity of the melt pool will increase slightly.
more »
« less
Effects of Scanning Strategy on Residual Stress Formation in Additively Manufactured SS 17-4 PH
Parts fabricated via directed energy additive manufacturing (AM) can experience very high, localized temperature gradients during manufacture. These temperature gradients are conducive to the formation of a complex residual stress field within such parts. In the study, a thermo-mechanical model is employed for predicting the temperature distribution and residual stress in Ti-6Al-4V parts fabricated using laserpowder bed fusion (L-PBF). The result is utilized for determining a relationship between local part temperature gradients with generated residual stress. Using this numerical model, the effects of scan patterns are investigated.
more »
« less
- Award ID(s):
- 1657195
- PAR ID:
- 10055075
- Date Published:
- Journal Name:
- 28th International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference
- Page Range / eLocation ID:
- 2546-2550
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Intrinsic residual stresses in woven composites result from the coefficient of thermal expansion mismatch between the fibers and the matrix. Extrinsic residual stresses result from large scale thermal gradients during curing and cooling. Intrinsic residual stresses in 3D woven composites are sometimes severe enough to cause micro-cracking in the matrix. They are also expected to impact the fatigue resistance and the impact resistance. To the best of our knowledge, there have been no spatially resolved measurements of the intrinsic residual stress field as a function of position in the repeating weave pattern. We used digital image correlation (DIC) and electronic speckle pattern interferometry (ESPI) to measure the surface displacement field resulting from drilling a 1 mm diameter hole at four selected locations in two different 3D woven composite architectures that represent low and high through-the-thickness constraint. The two methods are used because the displacements sometimes on the lower end of the resolution for the DIC method and the displacement gradients are sometimes too steep to resolve the fringes for the ESPI method. Finite element models constructed with realistic fiber geometry using Dynamic Fabric Mechanic Analyzer software were utilized to estimate the residual stress field from cooling from the curing temperature. Holes were manually inserted by deactivating the elements in the hole region and the resultant displacement fields were compared to the measurements. In general, the measured displacement fields were lower in magnitude than the model predictions. In some cases, the sign of the predicted displacement field is opposite to the observed field which could be attributed to differences between the actual hole location and the hole in the model.more » « less
-
Scalmalloy® is an Al-Mg-Sc-Zr-based alloy specifically developed for additive manufacturing (AM). This alloy is designed for use with a direct aging treatment, as recommended by the manufacturer, rather than with a multistep treatment, as often seen in conventional manufacturing. Most work with Scalmalloy® is conducted using powder bed rather than powder-fed processes. This investigation seeks to fill this knowledge gap and expand beyond single-step aging to promote an overall balanced AM-fabricated component. For this study, directed energy deposition (DED)-fabricated Scalmalloy® components were subjected to low-temperature treatments to minimize residual stresses inherent in the material due to the layer-by-layer build process. X-ray diffraction (XRD) indicated the possibility of stress minimization while reducing the detriment to mechanical strength through lower temperature treatments. Microstructural analyses consisting of energy dispersion spectroscopy (EDS) and electron backscatter diffraction (EBSD) revealed the presence of grain growth detrimentally affecting the strength and elongation made possible by very small grains inherent to AM and rapid solidification. Tensile testing determined that treatment at 175 °C for 1 h provides the best relief from the existing residual stresses; however, this is accompanied by a diminishment in the yield and tensile strength of 19 and 9.5%, respectively. It is noted that treatment at 175 °C for 2 h did not provide as great of a decrease in residual stresses, theorized to be the result of grain growth and other strengthening mechanisms further stressing the structure; however, the residual stresses are still significantly diminished compared with the as-built condition. Furthermore, a minimal reduction of the tensile strengths indicates the possibility of finding a balance between property diminishment and stress state through the work proposed here.more » « less
-
Abstract This work studies the use of laser shock peening (LSP) to improve back stress in additively manufactured (AM) 316L parts. Unusual hardening behavior in AM metal due to tortuous microstructure and strong texture poses additional design challenges. Anisotropic mechanical behavior complicates application for mechanical design because 3D printed parts will behave differently than traditionally manufactured parts under the same loading conditions. The prevalence of back-stress hardening or the Bauschinger effect causes reduced fatigue life under random loading and dissipates beneficial compressive residual stresses that prevent crack propagation. LSP is known to improve fatigue life by inducing compressive residual stress and has been applied with promising results to AM metal parts. It is here demonstrated that LSP may also be used as a tool for mitigating tensile back-stress hardening in AM parts, thereby reducing anisotropic hardening behavior and improving design use. It is also shown that the method of application of LSP to additively manufactured parts is key for achieving effective back-stress reduction. Back stress is extracted from additively manufactured dog bone samples built in both XY and XZ directions using hysteresis tensile. Both LSPed and as-built conditions are tested and compared, showing that LSPed samples exhibit a significant reduction to back stress when the laser processing is applied to the sample along the build direction. Electron backscatter diffraction (EBSD) performed under these conditions elucidates how grain morphologies and texture contribute to the observed improvement. Crystal plasticity finite element (CPFE) modeling develops insights as to the mechanisms by which this reduction is achieved in comparison with EBSD results. In particular, the difference in plastic behavior across build orientations of identified crystal planes and grain families are shown to impact the degree of LSP-induced back-stress reduction that is sustained through tensile loading.more » « less
-
Laser powder bed fusion (LPBF) enables fabrication of complex metal components but remains limited by residual stress accumulation and part deformation. Most existing scan sequence generation strategies for LPBF rely on heuristic rules or empirical optimizations that are suboptimal, difficult to generalize across geometries, and insensitive to the underlying physics of the problem. The SmartScan framework was developed to overcome these limitations through model-based and optimization-driven scan sequence generation. SmartScan 1.0 employed a thermal model to optimize temperature uniformity, leading to significant reductions in residual stress and distortion compared to state-of-the-art heuristic approaches. However, its formulation ignored the mechanical aspects of residual stress and deformation. To address this deficiency, a preliminary study introduced SmartScan 2.0 (Pre) which utilized a decoupled linear thermomechanical formulation for scan sequence optimization for 2D geometries. Building on this foundation, this paper proposes SmartScan 2.0 based on a sequentially coupled linear thermoelastic model that simultaneously solves temperature and displacement fields to minimize thermally induced elastic deformation in 3D geometries. The computational efficiency of SmartScan 2.0 is enhanced through nondimensional scaling. Experimental validation on 3D LPBF specimens shows that SmartScan 2.0 achieves up to 69.0% reduction in residual stress and 17.4% reduction in deformation relative to SmartScan 1.0, and up to 60.6% reduction in residual stress and 12.8% reduction in deformation compared with SmartScan 2.0 (Pre). This work establishes the superiority of scan sequence optimization using coupled linear thermomechanical models over the existing thermal-only or decoupled thermomechanical approaches, without significantly sacrificing computational efficiency.more » « less
An official website of the United States government

