skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of Electrodeposited Nickel-Iron Alloy Film Composition Using Particle-Induced X-Ray Emission
The elemental composition of electrodeposited NiFe thin films was analyzed with particle-induced X-ray emission (PIXE). The thin films were electrodeposited on polycrystalline Au substrates from a 100 mM NiSO 4 , 10 mM FeSO 4 , 0.5 M H 3 BO 3 , and 1 M Na 2 SO 4 solution. PIXE spectra of these films were analyzed to obtain relative amounts of Ni and Fe as a function of deposition potential and deposition time. The results show that PIXE can measure the total deposited metal in a sample over at least four orders of magnitude with similar fractional uncertainties. The technique is also sensitive enough to observe the variations in alloy composition due to sample nonuniformity or variations in deposition parameters.  more » « less
Award ID(s):
0452206
PAR ID:
10055329
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Electrochemistry
Volume:
2011
ISSN:
2090-3537
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrodeposited conductive copolymer films with predictable relative properties (quantities of functional groups for further modification and capacitance) are of interest in sensors, organic electronic materials and energy applications. Potentiodynamic copolymerization of films in aqueous solutions of two different thiophene derivatives, (2,3-dihydrothieno[3,4-b]dioxin-2-yl)methanol (1) and 4-((2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-methoxy)-4-oxobutanoic acid (2), containing 0.02 M total monomer (0, 25, 34, 50, 66, 75, 100 mol%2), 0.05 M sodium dodecyl sulfate, and 0.1 M LiClO4, on gold microelectrodes in an array was investigated. Decreasing monomer deposited (m)from 0 to 100 mol%2is attributed to a decreasing pH that inhibits electropolymerization. Molar ratios of1and2in the films, determined by micro-attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, tracks closely with the ratio in the deposition solutions. Capacitances measured from cyclic voltammetry in aqueous buffer and electron transfer of ferrocyanide at the films are unaffected by copolymer composition, except for the 100 mol%2case. Ratios of reverse-to-forward faradaic peak currents suggest that films with high content of1expand in the anodic form and contract in the cathodic form and vice versa for films with high content of2, where anions and cations dominate counterion transport from solution, respectively. 
    more » « less
  2. Electrodeposited Cu–Sb thin films on Cu and Ni substrates are investigated as alloy anodes for Li-ion batteries to elucidate the effects of both the film composition and substrate interactions on anode cycling stability and lifetime. Thin films of composition Cu x Sb (0 < x < 2) exhibit the longest cycle lifetimes nearest x = 1. Additionally, the Cu–Sb films exhibit shorter cycle lifetimes when electrodeposited onto Cu substrates when compared to equivalent films on Ni substrates. Ex situ characterization and differential capacity analysis of the anodes reveal that significant interdiffusion occurs during cycling between pure Sb films and Cu substrates. The great extent of interdiffusion results in mechanical weakening of the film–substrate interface that exacerbates film delamination and decreases cycle lifetimes of Cu–Sb films on Cu substrates regardless of the film's composition. The results presented here demonstrate that the composition of the anode alone is not the most important predictor of long term cycle stability; the composition coupled with the identity of the substrate is key. These interactions are critical to understand in the design of high capacity, large volume change materials fabricated without the need for additional binders. 
    more » « less
  3. This paper reports a systematic study on the electrodeposition of metallic molybdenum from water-in-salt electrolytes containing superhigh concentrations of acetate. Cyclic voltammetry and DC deposition were carried out on rotating disk electrodes with various concentrations of CH3COOK and CH3COONH4to determine the effects of NH4+and K+on Mo deposition. A comparison was performed between CH3COOLi, CH3COONa, and CH3COOK to study the effects of different alkali metal cations. A synergistic effect was observed between K+and NH4+, where Mo deposition rate is enhanced in the presence of both cations. However, such synergistic effect was not observed between NH4+and other alkali cations. In addition, the impact of substrate on Mo deposition was also studied using Pt and Cu electrodes with different activity toward hydrogen evolution reaction. Electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize the surface morphology, crystallographic structure, and metallic state of Mo in the electrodeposited films. 
    more » « less
  4. Combinatorial growth is capable of creating a compositional gradient for thin film materials and thus has been adopted to explore composition variation mostly for metallic alloy thin films and some dopant concentrations for ceramic thin films. This study uses a combinatorial pulsed laser deposition method to successfully fabricate two‐phase oxide–oxide vertically aligned nanocomposite (VAN) thin films of La0.7Sr0.3MnO3(LSMO)‐NiO with variable composition across the film area. The LSMO‐NiO compositional gradient across the film alters the two‐phase morphology of the VAN through varying nanopillar size and density. Additionally, the magnetic anisotropy and magnetoresistance properties of the nanocomposite thin films increase with increasing NiO composition. This demonstration of a combinatorial method for VAN growth can increase the efficiency of nanocomposite thin film research by allowing all possible compositions of thin film materials to be explored in a single deposition. 
    more » « less
  5. Metallic glass thin films (MGTFs) are a recently developed class of alloy coatings with potential applications ranging from biomedical devices to electrical components. Their tribological performance in service conditions is dictated by MGTF bulk composition but can be limited by the native oxide surface that inevitably forms upon exposure to atmosphere. Surface oxidation, thickness, and composition of ZrCuNiAl MGTFs were characterized using a combination of X-ray photoelectron microscopy (XPS) and electron probe microanalysis (EPMA). MGTF samples with nominal thicknesses of 50, 500, and 1500 nm were sputtered onto Si and SiN wafer substrates within a high vacuum deposition chamber and their amorphicity was confirmed by X-ray diffraction. XPS depth profiling identified the thin film composition and showed that the surface oxide was dominated by a mixed layer of mostly ZrO2, a little oxidized Al, and some metallic Zr. EPMA X-ray intensities were acquired as a function of beam energy to excite characteristic X-rays from different depths of the MGTFs and reconstructed using open-source thin film analysis software BadgerFilm, to determine the composition and thickness of sample layers. EPMA results constrain the composition to be Zr54Cu29Al10Ni7 within 0.7 at. % variation and total thicknesses to be 49, 470, and 1546 nm. Using the oxide composition identified from XPS depth profiling as an input for BadgerFilm analysis, EPMA results indicate the surface oxidation layer on each of the thin film samples was 6.5 ± 1.1 nm thick and uniform across a 0.25 mm region of the film. 
    more » « less