skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-performance thermosets with tailored properties derived from methacrylated eugenol and epoxy-based vinyl ester: High-performance thermosets with tailored properties
Award ID(s):
1738417 1738669
PAR ID:
10056075
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Polymer International
Volume:
67
Issue:
5
ISSN:
0959-8103
Page Range / eLocation ID:
544 to 549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Thermoset polymers and fiber-reinforced polymer composites possess the chemical, physical, and mechanical properties necessary for energy-efficient vehicles and structures, but their energy-inefficient manufacturing and the lack of end-of-life management strategies render these materials unsustainable. Here, we demonstrate end-of-life deconstruction and upcycling of high-performance poly(dicyclopentadiene) (pDCPD) thermosets with a concurrent reduction in the energy demand for curing via frontal copolymerization. Triggered material deconstruction is achieved through cleavage of cyclic silyl ethers and acetals incorporated into pDCPD thermosets. Both solution-state and bulk experiments reveal that seven- and eight-membered cyclic silyl ethers and eight-membered cyclic acetals are incorporated efficiently with norbornene-derived monomers, permitting deconstruction at low comonomer loadings. Frontal copolymerization of DCPD with these tailored cleavable comonomers enables energy-efficient manufacturing of sustainable, high-performance thermosets with glass transition temperatures of >100 °C and elastic moduli of >1 GPa. The polymers are fully deconstructed, yielding hydroxyl-terminated oligomers that are upcycled to polyurethane-containing thermosets having a higher glass transition temperatures than that of the original polymer upon reaction with diisocyanates. This approach is extended to frontally polymerized fiber-reinforced composites, where large-fiber volume fraction composites (Vf = 65%) containing a cleavable comonomer are deconstructed and the reclaimed fibers are used to regenerate composites via frontal polymerization that display properties nearly identical to those of the original. This work demonstrates that the use of cleavable monomers, in combination with frontal manufacturing, provides a promising strategy to address sustainability challenges for high-performance materials at multiple stages of their lifecycle. 
    more » « less
  3. Conjugated copolymers containing electron donor and acceptor units in their main chain have emerged as promising materials for organic electronic devices due to their tunable optoelectronic properties. Herein, we describe the use of direct arylation polymerization to create a series of fully π-conjugated copolymers containing the highly tailorable purine scaffold as a key design element. To create efficient coupling sites, dihalopurines are flanked by alkylthiophenes to create a monomer that is readily copolymerized with a variety of conjugated comonomers, ranging from electron-donating 3,4-dihydro-2 H -thieno[3,4- b ][1,4]dioxepine to electron-accepting 4,7-bis(5-bromo-3-hexylthiophen-2-yl)benzo[ c ][1,2,5]thiadiazole. The comonomer choice and electronic nature of the purine scaffold allow the photophysical properties of the purine-containing copolymers to be widely varied, with optical bandgaps ranging from 1.96–2.46 eV, and photoluminescent quantum yields as high as ϕ = 0.61. Frontier orbital energy levels determined for the various copolymers using density functional theory tight binding calculations track with experimental results, and the geometric structures of the alkylthiophene-flanked purine monomer and its copolymer are found to be nearly planar. The utility of direct arylation polymerization and intrinsic tailorability of the purine scaffold highlight the potential of these fully conjugated polymers to establish structure–property relationships based on connectivity pattern and comonomer type, which may broadly inform efforts to advance purine-containing conjugated copolymers for various applications. 
    more » « less