skip to main content


Title: Structural basis for substrate recognition and inhibition of prephenate aminotransferase from Arabidopsis
Summary

Aromatic amino acids are protein building blocks and precursors to a number of plant natural products, such as the structural polymer lignin and a variety of medicinally relevant compounds. Plants make tyrosine and phenylalanine by a different pathway from many microbes; this pathway requires prephenate aminotransferase (PAT) as the key enzyme. Prephenate aminotransferase produces arogenate, the unique and immediate precursor for both tyrosine and phenylalanine in plants, and also has aspartate aminotransferase (AAT) activity. The molecular mechanisms governing the substrate specificity and activation or inhibition ofPATare currently unknown. Here we present the X‐ray crystal structures of the wild‐type and various mutants ofPATfromArabidopsis thaliana(AtPAT). Steady‐state kinetic and ligand‐binding analyses identified key residues, such as Glu108, that are involved in both keto acid and amino acid substrate specificities and probably contributed to the evolution ofPATactivity among class IbAATenzymes. Structures of AtPATmutants co‐crystallized with either α‐ketoglutarate or pyridoxamine 5′‐phosphate and glutamate further define the molecular mechanisms underlying recognition of keto acid and amino acid substrates. Furthermore, cysteine was identified as an inhibitor ofPATfromA. thaliana and Antirrhinum majusplants as well as the bacteriumChlorobium tepidum, uncovering a potential new effector ofPAT.

 
more » « less
NSF-PAR ID:
10056085
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
94
Issue:
2
ISSN:
0960-7412
Page Range / eLocation ID:
p. 304-314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While mammals require the essential amino acid tryptophan (Trp) in their diet, plants and microorganisms synthesize Trp de novo. The five-step Trp pathway starts with the shikimate pathway product, chorismate. Chorismate is converted to the aromatic compound anthranilate, which is then conjugated to a phosphoribosyl sugar in the second step by anthranilate phosphoribosyltransferase (PAT1). As a single-copy gene in plants, all fixed carbon flux to indole and Trp for protein synthesis, specialized metabolism, and auxin hormone biosynthesis proceeds through PAT1. While bacterial PAT1s have been studied extensively, plant PAT1s have escaped biochemical characterization. Using a structure model, we identified putative active site residues that were variable across plants and kinetically characterized six PAT1s (Arabidopsis thaliana (thale cress), Citrus sinensis (sweet orange), Pistacia vera (pistachio), Juglans regia (English walnut), Selaginella moellendorffii (spike moss), and Physcomitrium patens (spreading earth-moss)). We probed the catalytic efficiency, substrate promiscuity, and regulation of these six enzymes and found that the C. sinensis PAT1 is highly specific for its cognate substrate, anthranilate. Investigations of site-directed mutants of the A. thaliana PAT1 uncovered an active site residue that contributes to promiscuity. While Trp inhibits bacterial PAT1 enzymes, the six plant PAT1s that we tested were not modu- lated by Trp. Instead, the P. patens PAT1 was inhibited by tyrosine, and the S. moellendorffii PAT1 was inhibited by phenylalanine. This structure-informed biochemical examina- tion identified variations in activity, efficiency, specificity, and enzyme-level regulation across PAT1s from evolutionarily diverse plants. 
    more » « less
  2. Summary

    Many plants require prolonged exposure to cold to acquire the competence to flower. The process by which cold exposure results in competence is known as vernalization. InArabidopsis thaliana, vernalization leads to the stable repression of the floral repressorFLOWERING LOCUS Cvia chromatin modification, including an increase of trimethylation on lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2). Vernalization in pooids is associated with the stable induction of a floral promoter,VERNALIZATION1(VRN1). From a screen for mutants with a reduced vernalization requirement in the model grassBrachypodium distachyon, we identified two recessive alleles ofENHANCER OF ZESTELIKE 1(EZL1).EZL1is orthologous toA. thalianaCURLY LEAF 1, a gene that encodes the catalytic subunit ofPRC2.B. distachyon ezl1mutants flower rapidly without vernalization in long‐day (LD) photoperiods; thus,EZL1is required for the proper maintenance of the vegetative state prior to vernalization. Transcriptomic studies inezl1revealed mis‐regulation of thousands of genes, including ectopic expression of several floral homeotic genes in leaves. Loss ofEZL1results in the global reduction of H3K27me3 and H3K27me2, consistent with this gene making a major contribution toPRC2 activity inB. distachyon. Furthermore, inezl1mutants, the flowering genesVRN1andAGAMOUS(AG) are ectopically expressed and have reduced H3K27me3. Artificial microRNAknock‐down of eitherVRN1orAGinezl1‐1mutants partially restores wild‐type flowering behavior in non‐vernalized plants, suggesting that ectopic expression inezl1mutants may contribute to the rapid‐flowering phenotype.

     
    more » « less
  3. Summary

    Respiration in leaves and the continued elevation in the atmosphericCO2concentration causeCO2‐mediated reduction in stomatal pore apertures. Several mutants have been isolated for which stomatal responses to both abscisic acid (ABA) andCO2are simultaneously defective. However, there are only few mutations that impair the stomatal response to elevatedCO2, but not toABA. Such mutants are invaluable in unraveling the molecular mechanisms of earlyCO2signal transduction in guard cells. Recently, mutations in the mitogen‐activated protein (MAP) kinase,MPK12, have been shown to partially impairCO2‐induced stomatal closure. Here, we show thatmpk12plants, in whichMPK4is stably silenced specifically in guard cells (mpk12 mpk4GChomozygous double‐mutants), completely lackCO2‐induced stomatal responses and have impaired activation of guard cell S‐type anion channels in response to elevatedCO2/bicarbonate. However,ABA‐induced stomatal closure, S‐type anion channel activation andABA‐induced marker gene expression remain intact in thempk12 mpk4GCdouble‐mutants. These findings suggest thatMPK12 andMPK4 act very early inCO2signaling, upstream of, or parallel to the convergence ofCO2andABAsignal transduction. The activities ofMPK4 andMPK12 protein kinases were not directly modulated byCO2/bicarbonatein vitro, suggesting that they are not directCO2/bicarbonate sensors. Further data indicate thatMPK4 andMPK12 have distinguishable roles in Arabidopsis and that the previously suggested role ofRHC1 in stomatalCO2signaling is minor, whereasMPK4 andMPK12 act as key components of early stomatalCO2signal transduction.

     
    more » « less
  4. Abstract

    The actin‐related protein 2/3 complex (Arp2/3 complex), a key regulator of actin cytoskeletal dynamics, has been linked to multiple cellular processes, including those associated with response to stress. Herein, theSolanum habrochaitesARPC3gene, encoding a subunit protein of the Arp2/3 complex, was identified and characterized.ShARPC3encodes a 174‐amino acid protein possessing a conserved P21‐Arc domain. Silencing ofShARPC3resulted in enhanced susceptibility to the powdery mildew pathogenOidium neolycopersici(On‐Lz), demonstrating a role forShARPC3in defence signalling. Interestingly, a loss ofShARPC3coincided with enhanced susceptibility toOn‐Lz, a process that we hypothesize is the result of a block in the activity of SA‐mediated defence signalling. Conversely, overexpression ofShARPC3inArabidopsis thaliana, followed by inoculation withOn‐Lz, showed enhanced resistance, including the rapid induction of hypersensitive cell death and the generation of reactive oxygen. Heterologous expression ofShARPC3in thearc18mutant ofSaccharomyces cerevisiae(i.e.,∆arc18) resulted in complementation of stress‐induced phenotypes, including high‐temperature tolerance. Taken together, these data support a role for ShARPC3 in tomato through positive regulation of plant immunity in response toOneolycopersicipathogenesis.

     
    more » « less
  5. Summary

    Euonymus alatusdiacylglycerol acetyltransferase (EaDAcT) catalyzes the transfer of an acetyl group from acetyl‐CoA to thesn‐3 position of diacylglycerol to form 3‐acetyl‐1,2‐diacyl‐sn‐glycerol (acetyl‐TAG).EaDAcT belongs to a small, plant‐specific subfamily of the membrane bound O‐acyltransferases (MBOAT) that acylate different lipid substrates. Sucrose gradient density centrifugation revealed thatEaDAcT colocalizes to the same fractions as an endoplasmic reticulum (ER)‐specific marker. By mapping the membrane topology ofEaDAcT, we obtained an experimentally determined topology model for a plantMBOAT. TheEaDAcT model contains four transmembrane domains (TMDs), with both the N‐ and C‐termini orientated toward the lumen of theER. In addition, there is a large cytoplasmic loop between the first and secondTMDs, with theMBOATsignature region of the protein embedded in the thirdTMDclose to the interface between the membrane and the cytoplasm. During topology mapping, we discovered two cysteine residues (C187 and C293) located on opposite sides of the membrane that are important for enzyme activity. In order to identify additional amino acid residues important for acetyltransferase activity, we isolated and characterized acetyltransferases from other acetyl‐TAG‐producing plants. Among them, the acetyltransferase fromEuonymus fortuneipossessed the highest activityin vivoandin vitro. Mutagenesis of conserved amino acids revealed that S253, H257, D258 and V263 are essential forEaDAcT activity. Alteration of residues unique to the acetyltransferases did not alter the unique acyl donor specificity ofEaDAcT, suggesting that multiple amino acids are important for substrate recognition.

     
    more » « less