skip to main content


Title: Kirigami enhances film adhesion
Structures of thin films bonded on substrates have been used in technologies as diverse as flexible electronics, soft robotics, bio-inspired adhesives, thermal-barrier coatings, medical bandages, wearable devices and living devices. The current paradigm for maintaining adhesion of films on substrates is to make the films thinner, and more compliant and adhesive, but these requirements can compromise the function or fabrication of film–substrate structures. For example, there are limits on how thin, compliant and adhesive epidermal electronic devices can be fabricated and still function reliably. Here we report a new paradigm that enhances adhesion of films on substrates via designing rational kirigami cuts in the films without changing the thickness, rigidity or adhesiveness of the films. We find that the effective enhancement of adhesion by kirigami is due to (i) the shear-lag effect of the film segments; (ii) partial debonding at the film segments’ edges; and (iii) compatibility of kirigami films with inhomogeneous deformation of substrates. While kirigami has been widely used to program thin sheets with desirable shapes and mechanical properties, fabricate electronics with enhanced stretchability and design the assembly of three-dimensional microstructures, this paper gives the first systematic study on kirigami enhancing film adhesion. We further demonstrate novel applications including a kirigami bandage, a kirigami heat pad and printed kirigami electronics.  more » « less
Award ID(s):
1661627
PAR ID:
10056890
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
14
Issue:
13
ISSN:
1744-683X
Page Range / eLocation ID:
2515 to 2525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-healing soft electronic and robotic devices can, like human skin, recover autonomously from damage. While current devices use a single type of dynamic polymer for all functional layers to ensure strong interlayer adhesion, this approach requires manual layer alignment. In this study, we used two dynamic polymers, which have immiscible backbones but identical dynamic bonds, to maintain interlayer adhesion while enabling autonomous realignment during healing. These dynamic polymers exhibit a weakly interpenetrating and adhesive interface, whose width is tunable. When multilayered polymer films are misaligned after damage, these structures autonomously realign during healing to minimize interfacial free energy. We fabricated devices with conductive, dielectric, and magnetic particles that functionally heal after damage, enabling thin-film pressure sensors, magnetically assembled soft robots, and underwater circuit assembly.

     
    more » « less
  2. Abstract

    Conductive patterned metal films bonded to compliant elastomeric substrates form meshes which enable flexible electronic interconnects for various applications. However, while bottom-up deposition of thin films by sputtering or growth is well-developed for rigid electronics, maintaining good electrical conductivity in sub-micron thin metal films upon large deformations or cyclic loading remains a significant challenge. Here, we propose a strategy to improve the electromechanical performance of nanometer-thin palladium films by in-situ synthesis of a conformal graphene coating using chemical vapor deposition (CVD). The uniform graphene coverage improves the thin film’s damage tolerance, electro-mechanical fatigue, and fracture toughness owing to the high stiffness of graphene and the conformal CVD-grown graphene-metal interface. Graphene-coated Pd thin film interconnects exhibit stable increase in electrical resistance even when strained beyond 60% and longer fatigue life up to a strain range of 20%. The effect of graphene is more significant for thinner films of < 300 nm, particularly at high strains. The experimental observations are well described by the thin film electro-fragmentation model and the Coffin-Manson relationship. These findings demonstrate the potential of CVD-grown graphene nanocomposite materials in improving the damage tolerance and electromechanical robustness of flexible electronics. The proposed approach offers opportunities for the development of reliable and high-performance ultra-conformable flexible electronic devices.

     
    more » « less
  3. Bismuth telluride-based thin films have been investigated as the active material in flexible and micro thermoelectric generators (TEGs) for near room-temperature energy harvesting applications. The latter is a class of compact printed circuit board compatible devices conceptualized for operation at low-temperature gradients to generate power for wireless sensor nodes (WSNs), the fundamental units of the Internet-of-Things (IoT). CMOS and MEMS compatible micro-TEGs require thin films that can be integrated into the fabrication flow without compromising their thermoelectric properties. We present results on the thermoelectric properties of (Bi,Sb)2(Se,Te)3 thin films deposited via thermal evaporation of ternary compound pellets on four-inch SiO2 substrates at room temperature. Thin-film compositions and post-deposition annealing parameters are optimized to achieve power factors of 2.75 mW m−1 K−2 and 0.59 mW m−1 K−2 for p-type and n-type thin films. The measurement setup is optimized to characterize the thin-film properties accurately. Thin-film adhesion is further tested and optimized on several substrates. Successful lift-off of p-type and n-type thin films is completed on the same wafer to create thermocouple patterns as per the target device design proving compatibility with the standard MEMS fabrication process. 
    more » « less
  4. Magnetic and ferroelectric oxide thin films have long been studied for their applications in electronics, optics, and sensors. The properties of these oxide thin films are highly dependent on the film growth quality and conditions. To maximize the film quality, epitaxial oxide thin films are frequently grown on single‐crystal oxide substrates such as strontium titanate (SrTiO3) and lanthanum aluminate (LaAlO3) to satisfy lattice matching and minimize defect formation. However, these single‐crystal oxide substrates cannot readily be used in practical applications due to their high cost, limited availability, and small wafer sizes. One leading solution to this challenge is film transfer. In this demonstration, a material from a new class of multiferroic oxides is selected, namely bismuth‐based layered oxides, for the transfer. A water‐soluble sacrificial layer of Sr3Al2O6is inserted between the oxide substrate and the film, enabling the release of the film from the original substrate onto a polymer support layer. The films are transferred onto new substrates of silicon and lithium niobate (LiNbO3) and the polymer layer is removed. These substrates allow for the future design of electronic and optical devices as well as sensors using this new group of multiferroic layered oxide films.

     
    more » « less
  5. Nanoporous gold (np-Au) has found its use in applications ranging from catalysis to biosensing, where pore morphology plays a critical role in performance. While the morphology evolution of bulk np-Au has been widely studied, knowledge about its thin-film form is limited. This work hypothesizes that the mechanical compliance of the thin film substrate can play a critical role in the morphology evolution. Via experimental and finite-element-analysis approaches, we investigate the morphological variation in np-Au thin films deposited on compliant silicone (PDMS) substrates of a range of thicknesses anchored on rigid glass supports and compare those to the morphology of np-Au deposited on glass. More macroscopic (10 s to 100 s of microns) cracks and discrete islands form in the np-Au films on PDMS compared to on glass. Conversely, uniformly distributed microscopic (100 s of nanometers) cracks form in greater numbers in the np-Au films on glass than those on PDMS, with the cracks located within the discrete islands. The np-Au films on glass also show larger ligament and pore sizes, possibly due to higher residual stresses compared to the np-Au/PDMS films. The effective elastic modulus of the substrate layers decreases with increasing PDMS thickness, resulting in secondary np-Au morphology effects, including a reduction in macroscopic crack-to-crack distance, an increase in microscopic crack coverage, and a widening of the microscopic cracks. However, changes in the ligament/pore widths with PDMS thickness are negligible, allowing for independent optimization for cracking. We expect these results to inform the integration of functional np-Au films on compliant substrates into emerging applications, including flexible electronics.

     
    more » « less