Defense mechanisms against network-level attacks are commonly based on the use of cryptographic techniques, such as lengthy message authentication codes (MAC) that provide data integrity guarantees. However, such mechanisms require significant resources (both computational and network bandwidth), which prevents their continuous use in resource-constrained cyber-physical systems (CPS). Recently, it was shown how physical properties of controlled systems can be exploited to relax these stringent requirements for systems where sensor measurements and actuator commands are transmitted over a potentially compromised network; specifically, that merely intermittent use of data authentication (i.e., at occasional time points during system execution), can still provide strongmore »
Network Scheduling for Secure Cyber-Physical Systems
Existing design techniques for providing security guarantees against network-based attacks in cyber-physical systems (CPS) are based on continuous use of standard cryptographic tools to ensure data integrity. This creates an apparent conflict with common resource limitations in these systems, given that, for instance, lengthy message authentication codes (MAC) introduce significant overheads. We present a framework to ensure both timing guarantees for real-time network messages and Quality-of-Control (QoC) in the presence of network-based attacks. We exploit physical properties of controlled systems to relax constant integrity enforcement requirements, and show how the problem of feasibility testing of intermittently authenticated real-time messages can be cast as a mixed integer linear programming problem. Besides scheduling a set of real-time messages with predefined authentication rates obtained from QoC requirements, we show how to optimally increase the overall system QoC while ensuring that all real-time messages are schedulable. Finally, we introduce an efficient runtime bandwidth allocation method, based on opportunistic scheduling, in order to improve QoC. We evaluate our framework on a standard benchmark designed for CAN bus, and show how an infeasible message set with strong security guarantees can be scheduled if dynamics of controlled systems are taken into account along with real-time requirements.
- Publication Date:
- NSF-PAR ID:
- 10056951
- Journal Name:
- 2017 IEEE Real-Time Systems Symposium (RTSS)
- Page Range or eLocation-ID:
- 45 to 55
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the problem of network-based attacks, such as Man-in-the-Middle attacks, on standard state estimators. To ensure graceful control degradation in the presence of attacks, existing results impose very strict integrity requirements on the number of noncompromised sensors. We study the effects of sporadic data integrity enforcement, such as message authentication, on control performance under stealthy attacks. We show that even with sporadic data integrity guarantees, the attacker cannot introduce an unbounded state estimation error while remaining stealthy. We present a design-time framework to derive safe integrity enforcement policies, and illustrate its use; we show that with even 20% ofmore »
-
Growth of the Internet-of-things has led to complex system-on-chips (SoCs) being used in the edge devices in IoT applications. The increased complexity is demanding designers to consider several critical factors, such as dynamic requirement changes, long application life, mass production, and tight time-to-market deadlines. These requirements lead to more complex security concerns. SoC manufacturers outsource some of the intellectual property cores integrated on the SoC to untrusted third-party vendors. The untrusted intellectual properties can contain malicious implants, which can launch attacks using the resources provided by the on-chip interconnection network, commonly known as the network-on-chip (NoC). Existing efforts on securingmore »
-
Noninterference is a popular semantic security condition because it offers strong end-to-end guarantees, it is inherently compositional, and it can be enforced using a simple security type system. Unfortunately, it is too restrictive for real systems. Mechanisms for downgrading information are needed to capture real-world security requirements, but downgrading eliminates the strong compositional security guarantees of noninterference. We introduce _nonmalleable information flow_, a new formal security condition that generalizes noninterference to permit controlled downgrading of both confidentiality and integrity. While previous work on robust declassification prevents adversaries from exploiting the downgrading of confidentiality, our key insight is _transparent endorsement_, amore »
-
The resource-constrained nature of the Internet of Things (IoT) edges, poses a challenge in designing a secure and high-performance communication for this family of devices. Although side-channel resistant ciphers (either block or stream) could guarantee the security of the communication, the energy intensive nature of these ciphers makes them undesirable for lightweight IoT solutions. In this paper, we introduce ExTru, an encrypted communication protocol based on stream ciphers that adds a configurable switching & toggling network (CSTN) to not only boost the performance of the communication in these devices, it also consumes far less energy than the conventional side-channel resistantmore »