skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Studies of wave activity in the thermosphere-ionosphere system using Dynasonde techniques
Dynasonde approach to ionospheric radio sounding capitalizes on high precision of physical parameters and rich statistics of recognized echoes phase-based methods can provide. As has been recently demonstrated, the Dynasonde profiles of the electron density and of the horizontal gradients, complemented with profiles of the Doppler speed, carry comprehensive quantitative information about Atmospheric Gravity Waves, a ubiquitous feature of the space weather that has become an important objective of atmospheric modeling. Being combined into a time series, and without additional processing, the profiles allow visualization of the time fronts of the Traveling Ionospheric Disturbances (TIDs). They also provide high-resolution input data for calculating the complete set of parameters (both vertical and horizontal) of TID activity in the upper atmosphere between the base of the E layer and the maximum of the F layer. Application of the Lomb-Scargle periodogram technique to the tilt data provides unique insight into the dynamics of spectral composition of the TIDs. A similar technique applied to longer time series allows determining characteristics of thermospheric tides. Single sounding sessions allow observations of ionospheric manifestations of acoustic waves produced by ground-based sources. All the mentioned products of the Dynasonde data analysis require a common, standard ionogram mode of radar operation. Therefore, information about standard parameters of the ionospheric E, F regions, possibility to obtain vector velocities characterizing movement of plasma contours, and quantitative parameters of the km-scale irregularity spectrum are not lost and contribute into comprehensive description of wave activity in the thermosphere-ionosphere system.  more » « less
Award ID(s):
1643119
PAR ID:
10057014
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. During minor to moderate geomagnetic storms, caused by corotatinginteraction regions (CIRs) at the leading edge of high-speed streams (HSSs), solar windAlfvén waves modulated the magnetic reconnection at the daysidemagnetopause. The Resolute Bay Incoherent Scatter Radars (RISR-C andRISR-N), measuring plasma parameters in the cusp and polar cap, observedionospheric signatures of flux transfer events (FTEs) that resulted in theformation of polar cap patches. The patches were observed as they moved over the RISR, and the Canadian High-Arctic Ionospheric Network (CHAIN)ionosondes and GPS receivers. The coupling process modulated the ionospheric convection and the intensity of ionospheric currents, including the auroral electrojets. The horizontal equivalent ionospheric currents (EICs) are estimated from ground-based magnetometer data using an inversion technique. Pulses of ionospheric currents that are a source of Joule heating in the lower thermosphere launched atmospheric gravity waves, causing travelingionospheric disturbances (TIDs) that propagated equatorward. The TIDs wereobserved in the SuperDual Auroral Radar Network (SuperDARN) high-frequency (HF) radar groundscatter and the detrended total electron content (TEC) measured by globallydistributed Global Navigation Satellite System (GNSS) receivers. 
    more » « less
  2. Vertical incidence pulsed ionospheric radar (VIPIR) has been operated to observe the polar ionosphere with Dynasonde analysis software at Jang Bogo Station (JBS), Antarctica, since 2017. The JBS-VIPIR-Dynasonde (JVD) provides ionospheric parameters such as the height profile of electron density with NmF2 and hmF2, the ion drift, and the ionospheric tilt in the bottomside ionosphere. The JBS (74.6°S, 164.2°E) is located in the polar cap, cusp, or auroral region depending on the geomagnetic activity and local time. In the present study, an initial assessment of JVD ionospheric densities is attempted by the comparison with GPS TEC measurements which are simultaneously obtained from the GPS receiver at JBS during the solar minimum period from 2017 to 2019. It is found that the JVD NmF2 and bottomside TEC (bTEC) show a generally good correlation with GPS TEC for geomagnetically quiet conditions. However, the bTEC seems to be less correlated with the GPS TEC with slightly larger spreads especially during the daytime and in summer, which seems to be associated with the characteristics of the polar ionosphere such as energetic particle precipitations and large density irregularities. It is also found that the Dynasonde analysis seems to show some limitations to handle these characteristics of the polar ionosphere and needs to be improved to produce more accurate ionospheric density profiles especially during disturbed conditions. 
    more » « less
  3. Korea Polar Research Institute (KOPRI) installed an ionospheric sounding radar system called Vertical Incidence Pulsed Ionospheric Radar (VIPIR) at Jang Bogo Station (JBS) in 2015 in order to routinely monitor the state of the ionosphere in the auroral oval and polar cap regions. Since 2017, after two-year test operation, it has been continuously operated to produce various ionospheric parameters. In this article, we will introduce the characteristics of the JBS-VIPIR observations and possible applications of the data for the study on the polar ionosphere. The JBS-VIPIR utilizes a log periodic transmit antenna that transmits 0.5–25 MHz radio waves, and a receiving array of 8 dipole antennas. It is operated in the Dynasonde B-mode pulse scheme and utilizes the 3-D inversion program, called NeXtYZ, for the data acquisition and processing, instead of the conventional 1-D inversion procedure as used in the most of digisonde observations. The JBS-VIPIR outputs include the height profiles of the electron density, ionospheric tilts, and ion drifts with a 2-minute temporal resolution in the bottomside ionosphere. With these observations, possible research applications will be briefly described in combination with other observations for the aurora, the neutral atmosphere and the magnetosphere simultaneously conducted at JBS. 
    more » « less
  4. Abstract During 30 September to 9 October 2016, Hurricane Matthew traversed the Caribbean Sea to the east coast of the United States. During its period of greatest intensity, in the central Caribbean, Matthew excited a large number of concentric gravity waves (GWs or CGWs). In this paper, we report on hurricane‐generated CGWs observed in both the stratosphere and mesosphere from spaceborne satellites and in the ionosphere by ground Global Positioning System receivers. We found CGWs with horizontal wavelengths of ~200–300 km in the stratosphere (height of ~30–40 km) and in the airglow layer of the mesopause (height of ~85–90 km), and we found concentric traveling ionospheric disturbances (TIDs or CTIDs) with horizontal wavelengths of ~250–350 km in the ionosphere (height of ~100–400 km). The observed TIDs lasted for more than several hours on 1, 2, and 7 October 2016. We also briefly discuss the vertical and horizontal propagation of the Hurricane Matthew‐induced GWs and TIDs. This study shows that Hurricane Matthew induced significant dynamical coupling between the troposphere and the entire middle and upper atmosphere via GWs. It is the first comprehensive satellite analysis of gravity wave propagation generated by hurricane event from the troposphere through the stratosphere and mesosphere into the ionosphere. 
    more » « less
  5. The impact of regional-scale neutral atmospheric waves has been demonstrated to have profound effects on the ionosphere, but the circumstances under which they generate ionospheric disturbances and seed plasma instabilities are not well understood. Neutral atmospheric waves vary from infrasonic waves of <20 Hz to gravity waves with periods on the order of 10 min, for simplicity, hereafter they are combined under the common term Acoustic and Gravity Waves (AGWs). There are other longer period waves like planetary waves from the lower and middle atmosphere, whose effects are important globally, but they are not considered here. The most ubiquitous and frequently observed impact of AGWs on the ionosphere are Traveling Ionospheric Disturbances (TIDs), but AGWs also affect the global ionosphere/thermosphere circulation and can trigger ionospheric instabilities (e.g., Perkins, Equatorial Spread F). The purpose of this white paper is to outline additional studies and observations that are required in the coming decade to improve our understanding of the impact of AGWs on the ionosphere. 
    more » « less