The second Korean Antarctic station, Jang Bogo Station (JBS), Terra Nova Bay (74°37.4′S, 164°13.7′E), is operational since March 2014. A Fabry–Perot Interferometer (FPI) and Vertical Incidence Pulsed Ionospheric Radar (VIPIR) were installed in 2014 and 2015 respectively, for simultaneous observations of neutral atmosphere and ionosphere in the polar region. Neutral winds observed by FPI show typical diurnal and semi-diurnal variations at around 250 km and 87 km respectively. VIPIR observations for the ionosphere also show typical electron density distributions in the polar region. Unlike conventional ionospheric sounder, it can measure ionospheric tilts to provide horizontal gradients of electron density over JBS in addition to general ionospheric parameters from sounding observation. In this article, we briefly report the preliminary results of the observations for the neutral atmosphere and ionosphere in the polar cap region.
more »
« less
Observations of the Polar Ionosphere by the Vertical Incidence Pulsed Ionospheric Radar at Jang Bogo Station, Antarctica
Korea Polar Research Institute (KOPRI) installed an ionospheric sounding radar system called Vertical Incidence Pulsed Ionospheric Radar (VIPIR) at Jang Bogo Station (JBS) in 2015 in order to routinely monitor the state of the ionosphere in the auroral oval and polar cap regions. Since 2017, after two-year test operation, it has been continuously operated to produce various ionospheric parameters. In this article, we will introduce the characteristics of the JBS-VIPIR observations and possible applications of the data for the study on the polar ionosphere. The JBS-VIPIR utilizes a log periodic transmit antenna that transmits 0.5–25 MHz radio waves, and a receiving array of 8 dipole antennas. It is operated in the Dynasonde B-mode pulse scheme and utilizes the 3-D inversion program, called NeXtYZ, for the data acquisition and processing, instead of the conventional 1-D inversion procedure as used in the most of digisonde observations. The JBS-VIPIR outputs include the height profiles of the electron density, ionospheric tilts, and ion drifts with a 2-minute temporal resolution in the bottomside ionosphere. With these observations, possible research applications will be briefly described in combination with other observations for the aurora, the neutral atmosphere and the magnetosphere simultaneously conducted at JBS.
more »
« less
- Award ID(s):
- 1643119
- PAR ID:
- 10167708
- Date Published:
- Journal Name:
- Journal of astronomy and space sciences
- Volume:
- 37
- Issue:
- 2
- ISSN:
- 2093-1409
- Page Range / eLocation ID:
- 143-156
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The space hurricane is a newly discovered large-scale three-dimensional magnetic vortex structure that spans the polar ionosphere and magnetosphere. It has been suggested to open a fast energy transport channel for the solar wind to invade Earth’s magnetosphere under northward interplanetary magnetic field (IMF) conditions. It is, therefore, an important phenomenon to understand the solar wind–magnetosphere–ionosphere coupling process under northward IMF conditions. In this study, we report the three-dimensional ionospheric plasma properties of a space hurricane event in the Northern Hemisphere observed by multiple instruments. Based on the convection velocity observations from ground-based radars and polar satellites, we confirm that the major modulation to the polar cap convection called a space hurricane rotates clockwise at the altitude of the ionosphere. Ground-based incoherent scatter radar and polar satellite observations reveal four features associated with the space hurricane: 1) strong plasma flow shears and being embedded in a clockwise lobe convection cell; 2) a major addition to the total energy deposition in the ionosphere–thermosphere system by Joule heating; 3) downward ionospheric electron transport; and 4) multiple ion-temperature enhancements in the sunward velocity region, likely from the spiral arms of the space hurricane. These results present, first, the impact of space hurricane on the low-altitude ionosphere and provide additional insights on the magnetospheric impact on structuring in the polar ionosphere.more » « less
-
Vertical incidence pulsed ionospheric radar (VIPIR) has been operated to observe the polar ionosphere with Dynasonde analysis software at Jang Bogo Station (JBS), Antarctica, since 2017. The JBS-VIPIR-Dynasonde (JVD) provides ionospheric parameters such as the height profile of electron density with NmF2 and hmF2, the ion drift, and the ionospheric tilt in the bottomside ionosphere. The JBS (74.6°S, 164.2°E) is located in the polar cap, cusp, or auroral region depending on the geomagnetic activity and local time. In the present study, an initial assessment of JVD ionospheric densities is attempted by the comparison with GPS TEC measurements which are simultaneously obtained from the GPS receiver at JBS during the solar minimum period from 2017 to 2019. It is found that the JVD NmF2 and bottomside TEC (bTEC) show a generally good correlation with GPS TEC for geomagnetically quiet conditions. However, the bTEC seems to be less correlated with the GPS TEC with slightly larger spreads especially during the daytime and in summer, which seems to be associated with the characteristics of the polar ionosphere such as energetic particle precipitations and large density irregularities. It is also found that the Dynasonde analysis seems to show some limitations to handle these characteristics of the polar ionosphere and needs to be improved to produce more accurate ionospheric density profiles especially during disturbed conditions.more » « less
-
The polar and high latitude regions of the ionosphere are host to complex plasma processes involving Magnetosphere-Ionosphere (MI) coupling, plasma convection, and auroral dynamics. The magnetic field lines from the polar cusp down through the auroral region map out to the magnetosphere and project the footprint of the large-scale convective processes driven by the solar wind onto the ionosphere. This region is also a unique environment where the magnetic field is oriented nearly vertical, resulting in horizontal drifts along closed, localized, convection patterns, and where prolonged periods of darkness during the winter result in the absence of significant photoionization. This set of conditions results in unique ionospheric structures which can set the stage for the generation of the gradient drift instability (GDI). The GDI occurs when the density gradient and ExB plasma drift are in the same direction. The GDI is a source of structuring at density gradients and may give rise to ionospheric irregularities that impact over-the-horizon radars and GPS signals. While the plasma ExB drifts are supplied by magnetospheric convection and MI coupling, sharp density gradients in the polar regions will be present at polar holes. Since the GDI occurs where the density gradient and plasma drift are parallel, the ionospheric irregularities caused by the GDI should occur at the leading edge of the polar hole. If so, the resulting production of small-scale density irregularities may, if the density is high enough, give rise to scintillation of GNSS signals and backscatter on HF radars. In this study, we investigate whether these irregularities can occur at the edges of polar holes as detected by the HF radar scatter. We use the Ionospheric Data Assimilation 4-Dimentional (IDA4D) and Assimilative Mapping of Ionospheric Electrodynamics (AMIE) models to characterize the high latitude ionospheric density and ExB drift convective structures, respectively, for one of nine polar hole events identified using RISR-N incoherent scatter radar in Forsythe et al [2021]. The combined IDA4D and AMIE assimilative outputs indicate where the GDI could be triggered, e.g., locations where the density gradient and ExB drift velocity have parallel components and the growth rate is smaller than the characteristic time over which the convective pattern changes, in this case, ~1/15 min. The presence of decameter ionospheric plasma irregularities is detected using the Super Dual Auroral Radar Network (SuperDARN). SuperDARN radars are HF coherent scatter radars. The presence of ionospheric radar returns in regions unstable to GDI grown strongly suggest the GDI is producing decameter scale plasma irregularities. The statistical analyses conducted in the above investigation do not show a clear pattern of enhanced scatter with larger computed GDI growth rates. Further investigation must be conducted before concluding that the GDI does not cause irregularities detectable with HF radar at polar holes.more » « less
-
Abstract Interplanetary (IP) shock‐driven sudden compression of the Earth's magnetosphere produces electromagnetic disturbances in the polar ionosphere. Several studies have examined the effects of IP shock on magnetosphere‐ionosphere coupling systems using all‐sky cameras and radars. In this study, we examine responses and drivers of the polar ionosphere following an IP shock compression on 16 June 2012. We observe the vertical drift and concurrent horizontal motion of the plasma. Observations from digisonde located at Antarctic Zhongshan station (ZHO) showed an ionospheric thickEregion ionization and associated vertical downward plasma motion atFregion. In addition, horizontal ionospheric convection reversals were observed on the Super Dual Auroral Radar Network ZHO and McMurdo radar observations. Findings suggest that the transient convective reversal breaks the original shear equilibrium, it is expected that the IP shock‐induced electric field triggers an enhanced velocity shear mapping to theEregion. The horizontal motion of the plasma was attributed to only the dusk‐to‐dawn electric field that existed during the preliminary phase of sudden impulse. We also found that ionospheric convection reversals were driven by a downward field‐aligned current. The results of these observations reveal, for the first time, the immediate and direct cusp ionosphere response to the IP shock, which is critical for understanding the global response of the magnetosphere following an abrupt change in Interplanetory Magnetic Field (IMF) and solar wind conditions.more » « less
An official website of the United States government

