skip to main content


Title: Observations of the Polar Ionosphere by the Vertical Incidence Pulsed Ionospheric Radar at Jang Bogo Station, Antarctica
Korea Polar Research Institute (KOPRI) installed an ionospheric sounding radar system called Vertical Incidence Pulsed Ionospheric Radar (VIPIR) at Jang Bogo Station (JBS) in 2015 in order to routinely monitor the state of the ionosphere in the auroral oval and polar cap regions. Since 2017, after two-year test operation, it has been continuously operated to produce various ionospheric parameters. In this article, we will introduce the characteristics of the JBS-VIPIR observations and possible applications of the data for the study on the polar ionosphere. The JBS-VIPIR utilizes a log periodic transmit antenna that transmits 0.5–25 MHz radio waves, and a receiving array of 8 dipole antennas. It is operated in the Dynasonde B-mode pulse scheme and utilizes the 3-D inversion program, called NeXtYZ, for the data acquisition and processing, instead of the conventional 1-D inversion procedure as used in the most of digisonde observations. The JBS-VIPIR outputs include the height profiles of the electron density, ionospheric tilts, and ion drifts with a 2-minute temporal resolution in the bottomside ionosphere. With these observations, possible research applications will be briefly described in combination with other observations for the aurora, the neutral atmosphere and the magnetosphere simultaneously conducted at JBS.  more » « less
Award ID(s):
1643119
NSF-PAR ID:
10167708
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of astronomy and space sciences
Volume:
37
Issue:
2
ISSN:
2093-1409
Page Range / eLocation ID:
143-156
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vertical incidence pulsed ionospheric radar (VIPIR) has been operated to observe the polar ionosphere with Dynasonde analysis software at Jang Bogo Station (JBS), Antarctica, since 2017. The JBS-VIPIR-Dynasonde (JVD) provides ionospheric parameters such as the height profile of electron density with NmF2 and hmF2, the ion drift, and the ionospheric tilt in the bottomside ionosphere. The JBS (74.6°S, 164.2°E) is located in the polar cap, cusp, or auroral region depending on the geomagnetic activity and local time. In the present study, an initial assessment of JVD ionospheric densities is attempted by the comparison with GPS TEC measurements which are simultaneously obtained from the GPS receiver at JBS during the solar minimum period from 2017 to 2019. It is found that the JVD NmF2 and bottomside TEC (bTEC) show a generally good correlation with GPS TEC for geomagnetically quiet conditions. However, the bTEC seems to be less correlated with the GPS TEC with slightly larger spreads especially during the daytime and in summer, which seems to be associated with the characteristics of the polar ionosphere such as energetic particle precipitations and large density irregularities. It is also found that the Dynasonde analysis seems to show some limitations to handle these characteristics of the polar ionosphere and needs to be improved to produce more accurate ionospheric density profiles especially during disturbed conditions. 
    more » « less
  2. The second Korean Antarctic station, Jang Bogo Station (JBS), Terra Nova Bay (74°37.4′S, 164°13.7′E), is operational since March 2014. A Fabry–Perot Interferometer (FPI) and Vertical Incidence Pulsed Ionospheric Radar (VIPIR) were installed in 2014 and 2015 respectively, for simultaneous observations of neutral atmosphere and ionosphere in the polar region. Neutral winds observed by FPI show typical diurnal and semi-diurnal variations at around 250 km and 87 km respectively. VIPIR observations for the ionosphere also show typical electron density distributions in the polar region. Unlike conventional ionospheric sounder, it can measure ionospheric tilts to provide horizontal gradients of electron density over JBS in addition to general ionospheric parameters from sounding observation. In this article, we briefly report the preliminary results of the observations for the neutral atmosphere and ionosphere in the polar cap region. 
    more » « less
  3. Abstract

    The ionospheric density displays hemispheric asymmetries in the polar region due to various hemispheric differences, for example, in the offset between geographic and geomagnetic poles and in the geomagnetic field strength. Using ground‐based ionospheric measurements from Vertical Incidence Pulsed Ionospheric Radar with Dynasonde analysis at Jang Bogo Station (JBS), Antarctica and from EISCAT Svalbard Radar (ESR) where both sites are located mostly in the polar cap, we investigate the hemispheric differences in the ionospheric density between the northern and southern hemispheres for geomagnetically quiet and solar minimum condition. The results are also compared with Thermosphere Ionosphere Electrodynamic Global Circulation Model (TIEGCM) simulations. The observations show larger density and stronger diurnal and seasonal variations at JBS in the southern hemisphere than at Svalbard in the northern hemisphere. The diurnal variations of the density peak height are also observed to be much larger at JBS. In both hemispheres, the ionospheric density is significantly reduced in winter due to the limited solar production at high geographic latitudes, but TIEGCM considerably overestimates winter density, which is even larger than summer density, especially in the northern hemisphere. Also existed are the differences in the equinoctial asymmetry between the observations and the simulations: the daytime F‐region density is observed to be larger in fall than in spring in both hemispheres, but TIEGCM shows the opposite. In general, most of the observed asymmetrical density are much weaker in the model simulation, which may result from lack of proper magnetospheric forcings and neutral dynamics in the model.

     
    more » « less
  4. Abstract

    Discrete high‐density plasma structures in the Earth's ionosphere that convect across the polar cap from the dayside to nightside are known as polar cap patches. This high‐latitude phenomenon can interfere and disrupt satellite and high‐frequency (HF) communications when the associated sharp electron density gradients are encountered, and therefore, accurate modeling and forecasting of such events would be greatly beneficial. In this study, we have utilized the assimilative Global Positioning System Ionospheric Inversion (GPSII) method to reconstruct the high‐latitude ionosphere utilizing data from Global Navigation Satellite System (GNSS) receivers, vertical ionosondes, the Resolute Bay Incoherent Scatter Radar (RISR‐N), in situ satellite data, and Super Dual Auroral Radar Network (SuperDARN) radars. The novel method of assimilating RISR‐N and SuperDARN ground scatter measurements helps to increase the limited number of observations at high latitudes. The reconstructed polar cap patches are shown to correspond with ground‐ and spaced‐based observations, illustrating the ability of utilizing GPSII to study the complex high‐latitude region.

     
    more » « less
  5. Abstract

    Sudden enhancement in high‐frequency absorption is a well‐known impact of solar flare‐driven Short‐Wave Fadeout (SWF). Less understood, is a perturbation of the radio wave frequency as it traverses the ionosphere in the early stages of SWF, also known as the Doppler flash. Investigations have suggested two possible sources that might contribute to it’s manifestation: first, enhancements of plasma density in the D‐and lower E‐regions; second, the lowering of the F‐region reflection point. Our recent work investigated a solar flare event using first principles modeling and Super Dual Auroral Radar Network (SuperDARN) HF radar observations and found that change in the F‐region refractive index is the primary driver of the Doppler flash. This study analyzes multiple solar flare events observed across different SuperDARN HF radars to determine how flare characteristics, properties of the traveling radio wave, and geophysical conditions impact the Doppler flash. In addition, we use incoherent scatter radar data and first‐principles modeling to investigate physical mechanisms that drive the lowering of the F‐region reflection points. We found, (a) on average, the change in E‐ and F‐region refractive index is the primary driver of the Doppler flash, (b) solar zenith angle, ray’s elevation angle, operating frequency, and location of the solar flare on the solar disk can alter the ionospheric regions of maximum contribution to the Doppler flash, (c) increased ionospheric Hall and Pedersen conductance causes a reduction of the daytime eastward electric field, and consequently reduces the vertical ion‐drift in the lower and middle latitude ionosphere, which results in lowering of the F‐region ray reflection point.

     
    more » « less