The conditional mutual information I(X; Y|Z) measures the average information that X and Y contain about each other given Z. This is an important primitive in many learning problems including conditional independence testing, graphical model inference, causal strength estimation and time-series problems. In several applications, it is desirable to have a functional purely of the conditional distribution py|x, z rather than of the joint distribution pX, Y, Z. We define the potential conditional mutual information as the conditional mutual information calculated with a modified joint distribution pY|X, ZqX, Z, where qX, Z is a potential distribution, fixed airport. We develop K nearest neighbor based estimators for this functional, employing importance sampling, and a coupling trick, and prove the finite k consistency of such an estimator. We demonstrate that the estimator has excellent practical performance and show an application in dynamical system inference.
more »
« less
Estimating Mutual Information for Discrete-Continuous Mixtures
Estimation of mutual information from observed samples is a basic primitive in machine learning, useful in several learning tasks including correlation mining, information bottleneck, Chow-Liu tree, and conditional independence testing in (causal) graphical models. While mutual information is a quantity well-defined for general probability spaces, estimators have been developed only in the special case of discrete or continuous pairs of random variables. Most of these estimators operate using the 3H -principle, i.e., by calculating the three (differential) entropies of X, Y and the pair (X,Y). However, in general mixture spaces, such individual entropies are not well defined, even though mutual information is. In this paper, we develop a novel estimator for estimating mutual information in discrete-continuous mixtures. We prove the consistency of this estimator theoretically as well as demonstrate its excellent empirical performance. This problem is relevant in a wide-array of applications, where some variables are discrete, some continuous, and others are a mixture between continuous and discrete components.
more »
« less
- Award ID(s):
- 1651236
- PAR ID:
- 10057056
- Date Published:
- Journal Name:
- 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conditional Mutual Information (CMI) is a measure of conditional dependence between random variables X and Y, given another random variable Z. It can be used to quantify conditional dependence among variables in many data-driven inference problems such as graphical models, causal learning, feature selection and time-series analysis. While k-nearest neighbor (kNN) based estimators as well as kernel-based methods have been widely used for CMI estimation, they suffer severely from the curse of dimensionality. In this paper, we leverage advances in classifiers and generative models to design methods for CMI estimation. Specifically, we introduce an estimator for KL-Divergence based on the likelihood ratio by training a classifier to distinguish the observed joint distribution from the product distribution. We then show how to construct several CMI estimators using this basic divergence estimator by drawing ideas from conditional generative models. We demonstrate that the estimates from our proposed approaches do not degrade in performance with increasing dimension and obtain significant improvement over the widely used KSG estimator. Finally, as an application of accurate CMI estimation, we use our best estimator for conditional independence testing and achieve superior performance than the state-of-the-art tester on both simulated and real data-sets.more » « less
-
Information bottleneck (IB) is a technique for extracting information in one random variable X that is relevant for predicting another random variable Y. IB works by encoding X in a compressed “bottleneck” random variable M from which Y can be accurately decoded. However, finding the optimal bottleneck variable involves a difficult optimization problem, which until recently has been considered for only two limited cases: discrete X and Y with small state spaces, and continuous X and Y with a Gaussian joint distribution (in which case optimal encoding and decoding maps are linear). We propose a method for performing IB on arbitrarily-distributed discrete and/or continuous X and Y, while allowing for nonlinear encoding and decoding maps. Our approach relies on a novel non-parametric upper bound for mutual information. We describe how to implement our method using neural networks. We then show that it achieves better performance than the recently-proposed “variational IB” method on several real-world datasets.more » « less
-
We consider off-policy evaluation (OPE) in Partially Observable Markov Decision Processes (POMDPs), where the evaluation policy depends only on observable variables and the behavior policy depends on unobservable latent variables. Existing works either assume no unmeasured confounders, or focus on settings where both the observation and the state spaces are tabular. In this work, we first propose novel identification methods for OPE in POMDPs with latent confounders, by introducing bridge functions that link the target policy’s value and the observed data distribution. We next propose minimax estimation methods for learning these bridge functions, and construct three estimators based on these estimated bridge functions, corresponding to a value function-based estimator, a marginalized importance sampling estimator, and a doubly-robust estimator. Our proposal permits general function approximation and is thus applicable to settings with continuous or large observation/state spaces. The nonasymptotic and asymptotic properties of the proposed estimators are investigated in detail. A Python implementation of our proposal is available at https://github.com/jiaweihhuang/ Confounded-POMDP-Exp.more » « less
-
null (Ed.)The measures of information transfer which correspond to non-additive entropies have intensively been studied in previous decades. The majority of the work includes the ones belonging to the Sharma–Mittal entropy class, such as the Rényi, the Tsallis, the Landsberg–Vedral and the Gaussian entropies. All of the considerations follow the same approach, mimicking some of the various and mutually equivalent definitions of Shannon information measures, and the information transfer is quantified by an appropriately defined measure of mutual information, while the maximal information transfer is considered as a generalized channel capacity. However, all of the previous approaches fail to satisfy at least one of the ineluctable properties which a measure of (maximal) information transfer should satisfy, leading to counterintuitive conclusions and predicting nonphysical behavior even in the case of very simple communication channels. This paper fills the gap by proposing two parameter measures named the α-q-mutual information and the α-q-capacity. In addition to standard Shannon approaches, special cases of these measures include the α-mutual information and the α-capacity, which are well established in the information theory literature as measures of additive Rényi information transfer, while the cases of the Tsallis, the Landsberg–Vedral and the Gaussian entropies can also be accessed by special choices of the parameters α and q. It is shown that, unlike the previous definition, the α-q-mutual information and the α-q-capacity satisfy the set of properties, which are stated as axioms, by which they reduce to zero in the case of totally destructive channels and to the (maximal) input Sharma–Mittal entropy in the case of perfect transmission, which is consistent with the maximum likelihood detection error. In addition, they are non-negative and less than or equal to the input and the output Sharma–Mittal entropies, in general. Thus, unlike the previous approaches, the proposed (maximal) information transfer measures do not manifest nonphysical behaviors such as sub-capacitance or super-capacitance, which could qualify them as appropriate measures of the Sharma–Mittal information transfer.more » « less