skip to main content


Title: CCMI : Classifier based Conditional Mutual Information Estimation
Conditional Mutual Information (CMI) is a measure of conditional dependence between random variables X and Y, given another random variable Z. It can be used to quantify conditional dependence among variables in many data-driven inference problems such as graphical models, causal learning, feature selection and time-series analysis. While k-nearest neighbor (kNN) based estimators as well as kernel-based methods have been widely used for CMI estimation, they suffer severely from the curse of dimensionality. In this paper, we leverage advances in classifiers and generative models to design methods for CMI estimation. Specifically, we introduce an estimator for KL-Divergence based on the likelihood ratio by training a classifier to distinguish the observed joint distribution from the product distribution. We then show how to construct several CMI estimators using this basic divergence estimator by drawing ideas from conditional generative models. We demonstrate that the estimates from our proposed approaches do not degrade in performance with increasing dimension and obtain significant improvement over the widely used KSG estimator. Finally, as an application of accurate CMI estimation, we use our best estimator for conditional independence testing and achieve superior performance than the state-of-the-art tester on both simulated and real data-sets.  more » « less
Award ID(s):
1651236 1703403
NSF-PAR ID:
10145952
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Uncertainty in artificial intelligence
ISSN:
1525-3384
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimation of information theoretic quantities such as mutual information and its conditional variant has drawn interest in recent times owing to their multifaceted applications. Newly proposed neural estimators for these quantities have overcome severe drawbacks of classical kNN-based estimators in high dimensions. In this work, we focus on conditional mutual information (CMI) estimation by utilizing its formulation as a minmax optimization problem. Such a formulation leads to a joint training procedure similar to that of generative adversarial networks. We find that our proposed estimator provides better estimates than the existing approaches on a variety of simulated datasets comprising linear and non-linear relations between variables. As an application of CMI estimation, we deploy our estimator for conditional independence (CI) testing on real data and obtain better results than state-of-the-art CI testers 
    more » « less
  2. Growth curve models (GCMs), with their ability to directly investigate within-subject change over time and between-subject differences in change for longitudinal data, are widely used in social and behavioral sciences. While GCMs are typically studied with the normal distribution assumption, empirical data often violate the normality assumption in applications. Failure to account for the deviation from normality in data distribution may lead to unreliable model estimation and misleading statistical inferences. A robust GCM based on conditional medians was recently proposed and outperformed traditional growth curve modeling when outliers are present resulting in nonnormality. However, this robust approach was shown to perform less satisfactorily when leverage observations existed. In this work, we propose a robust double medians growth curve modeling approach (DOME GCM) to thoroughly disentangle the influence of data contamination on model estimation and inferences, where two conditional medians are employed for the distributions of the within-subject measurement errors and of random effects, respectively. Model estimation and inferences are conducted in the Bayesian framework, and Laplace distributions are used to convert the optimization problem of median estimation into a problem of obtaining the maximum likelihood estimator for a transformed model. A Monte Carlo simulation study has been conducted to evaluate the numerical performance of the proposed approach, and showed that the proposed approach yields more accurate and efficient parameter estimates when data contain outliers or leverage observations. The application of the developed robust approach is illustrated using a real dataset from the Virginia Cognitive Aging Project to study the change of memory ability. 
    more » « less
  3. Summary

    Consider a pair of random variables, both subject to random right censoring. New estimators for the bivariate and marginal distributions of these variables are proposed. The estimators of the marginal distributions are not the marginals of the corresponding estimator of the bivariate distribution. Both estimators require estimation of the conditional distribution when the conditioning variable is subject to censoring. Such a method of estimation is proposed. The weak convergence of the estimators proposed is obtained. A small simulation study suggests that the estimators of the marginal and bivariate distributions perform well relatively to respectively the Kaplan–Meier estimator for the marginal distribution and the estimators of Pruitt and van der Laan for the bivariate distribution. The use of the estimators in practice is illustrated by the analysis of a data set.

     
    more » « less
  4. Estimation of mutual information from observed samples is a basic primitive in machine learning, useful in several learning tasks including correlation mining, information bottleneck, Chow-Liu tree, and conditional independence testing in (causal) graphical models. While mutual information is a quantity well-defined for general probability spaces, estimators have been developed only in the special case of discrete or continuous pairs of random variables. Most of these estimators operate using the 3H -principle, i.e., by calculating the three (differential) entropies of X, Y and the pair (X,Y). However, in general mixture spaces, such individual entropies are not well defined, even though mutual information is. In this paper, we develop a novel estimator for estimating mutual information in discrete-continuous mixtures. We prove the consistency of this estimator theoretically as well as demonstrate its excellent empirical performance. This problem is relevant in a wide-array of applications, where some variables are discrete, some continuous, and others are a mixture between continuous and discrete components. 
    more » « less
  5. Abstract Background

    A cell exhibits a variety of responses to internal and external cues. These responses are possible, in part, due to the presence of an elaborate gene regulatory network (GRN) in every single cell. In the past 20 years, many groups worked on reconstructing the topological structure of GRNs from large-scale gene expression data using a variety of inference algorithms. Insights gained about participating players in GRNs may ultimately lead to therapeutic benefits. Mutual information (MI) is a widely used metric within this inference/reconstruction pipeline as it can detect any correlation (linear and non-linear) between any number of variables (n-dimensions). However, the use of MI with continuous data (for example, normalized fluorescence intensity measurement of gene expression levels) is sensitive to data size, correlation strength and underlying distributions, and often requires laborious and, at times, ad hoc optimization.

    Results

    In this work, we first show that estimating MI of a bi- and tri-variate Gaussian distribution usingk-nearest neighbor (kNN) MI estimation results in significant error reduction as compared to commonly used methods based on fixed binning. Second, we demonstrate that implementing the MI-based kNN Kraskov–Stoögbauer–Grassberger (KSG) algorithm leads to a significant improvement in GRN reconstruction for popular inference algorithms, such as Context Likelihood of Relatedness (CLR). Finally, through extensive in-silico benchmarking we show that a new inference algorithm CMIA (Conditional Mutual Information Augmentation), inspired by CLR, in combination with the KSG-MI estimator, outperforms commonly used methods.

    Conclusions

    Using three canonical datasets containing 15 synthetic networks, the newly developed method for GRN reconstruction—which combines CMIA, and the KSG-MI estimator—achieves an improvement of 20–35% in precision-recall measures over the current gold standard in the field. This new method will enable researchers to discover new gene interactions or better choose gene candidates for experimental validations.

     
    more » « less