skip to main content


Title: Integrative meta-modeling identifies endocytic vesicles, late endosome and the nucleus as the cellular compartments primarily directing RTK signaling
Recently, intracellular receptor signaling has been identified as a key component mediating cell responses for various receptor tyrosine kinases (RTKs). However, the extent each endocytic compartment (endocytic vesicle, early endosome, recycling endosome, late endosome, lysosome and nucleus) contributes to receptor signaling has not been quantified. Furthermore, our understanding of endocytosis and receptor signaling is complicated by cell- or receptor-specific endocytosis mechanisms. Therefore, towards understanding the differential endocytic compartment signaling roles, and identifying how to achieve signal transduction control for RTKs, we delineate how endocytosis regulates RTK signaling. We achieve this via a meta-analysis across eight RTKs, integrating computational modeling with experimentally derived cell (compartment volume, trafficking kinetics and pH) and ligand–receptor (ligand/receptor concentration and interaction kinetics) physiology. Our simulations predict the abundance of signaling from eight RTKs, identifying the following hierarchy in RTK signaling: PDGFRβ > IGFR1 > EGFR > PDGFRα > VEGFR1 > VEGFR2 > Tie2 > FGFR1. We find that endocytic vesicles are the primary cell signaling compartment; over 43% of total receptor signaling occurs within the endocytic vesicle compartment for these eight RTKs. Mechanistically, we found that high RTK signaling within endocytic vesicles may be attributed to their low volume (5.3 × 10 −19 L) which facilitates an enriched ligand concentration (3.2 μM per ligand molecule within the endocytic vesicle). Under the analyzed physiological conditions, we identified extracellular ligand concentration as the most sensitive parameter to change; hence the most significant one to modify when regulating absolute compartment signaling. We also found that the late endosome and nucleus compartments are important contributors to receptor signaling, where 26% and 18%, respectively, of average receptor signaling occurs across the eight RTKs. Conversely, we found very low membrane-based receptor signaling, exhibiting <1% of the total receptor signaling for these eight RTKs. Moreover, we found that nuclear translocation, mechanistically, requires late endosomal transport; when we blocked receptor trafficking from late endosomes to the nucleus we found a 57% reduction in nuclear translocation. In summary, our research has elucidated the significance of endocytic vesicles, late endosomes and the nucleus in RTK signal propagation.  more » « less
Award ID(s):
1653925
NSF-PAR ID:
10057261
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Integrative Biology
Volume:
9
Issue:
5
ISSN:
1757-9694
Page Range / eLocation ID:
464 to 484
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    ESCRTs (Endosomal Sorting Complex Required for Transports) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intraluminal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT‐III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Functionally, depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP‐1. IST1 is also important for export of mannose 6‐phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain‐containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin‐containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live‐cell microscopy, we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.

     
    more » « less
  2. Abstract

    In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.

     
    more » « less
  3. null (Ed.)
    Saccharomyces cerevisiae is one of the best model organisms for the study of endocytic membrane trafficking. While studies in mammalian cells have characterized the temporal and morphological features of the endocytic pathway, studies in budding yeast have led the way in the analysis of the endosomal trafficking machinery components and their functions. Eukaryotic endomembrane systems were thought to be highly conserved from yeast to mammals, with the fusion of plasma membrane-derived vesicles to the early or recycling endosome being a common feature. Upon endosome maturation, cargos are then sorted for reuse or degraded via the endo-lysosomal (endo-vacuolar in yeast) pathway. However, recent studies have shown that budding yeast has a minimal endomembrane system that is fundamentally different from that of mammalian cells, with plasma membrane-derived vesicles fusing directly to a trans-Golgi compartment which acts as an early endosome. Thus, the Golgi, rather than the endosome, acts as the primary acceptor of endocytic vesicles, sorting cargo to pre-vacuolar endosomes for degradation. The field must now integrate these new findings into a broader understanding of the endomembrane system across eukaryotes. This article synthesizes what we know about the machinery mediating endocytic membrane fusion with this new model for yeast endomembrane function. 
    more » « less
  4. null (Ed.)
    At the host–pathogen interface, the protein composition of the plasma membrane (PM) has important implications for how a plant cell perceives and responds to invading microbial pathogens. A plant's ability to modulate its PM composition is critical for regulating the strength, duration, and integration of immune responses. One mechanism by which plant cells reprogram their cell surface is vesicular trafficking, including secretion and endocytosis. These trafficking processes add or remove cargo proteins (such as pattern-recognition receptors, transporters, and other proteins with immune functions) to or from the PM via small, membrane-bound vesicles. Clathrin-coated vesicles (CCVs) that form at the PM and trans-Golgi network/early endosomes have emerged as the prominent vesicle type in the regulation of plant immune responses. In this review, we discuss the roles of the CCV core, adaptors, and accessory components in plant defense signaling and immunity against various microbial pathogens. 
    more » « less
  5. Activation of the epidermal growth factor (EGF) receptor (EGFR) at the cell surface initiates signaling through the RAS-RAF-MAPK/ERK1/2 pathway and receptor endocytosis. Whether this signaling continues from endosomes remains unclear, because RAS is predominantly located on the plasma membrane, and the localization of endogenous RAF kinases, downstream effectors of RAS, is not defined. To examine RAF localization, we labeled endogenous RAF1 with mVenus using gene editing. From 10 to 15% of RAF1-mVenus (<2000 molecules/cell), which was initially entirely cytosolic, transiently translocated to the plasma membrane after EGF stimulation. Following an early burst of translocation, the membrane-associated RAF1-mVenus was undetectable by microscopy or subcellular fractionation, and this pool was estimated to be <200 molecules per cell. In contrast, persistent EGF-dependent translocation of RAF1-mVenus to the plasma membrane was driven by the RAF inhibitor sorafenib, which increases the affinity of Ras-GTP:RAF1 interactions. RAF1-mVenus was not found in EGFR-containing endosomes under any conditions. Computational modeling of RAF1 dynamics revealed that RAF1 membrane abundance is controlled most prominently by association and dissociation rates from RAS-GTP and by RAS-GTP concentration. The model further suggested that the relatively protracted activation of the RAF-MEK1/2-ERK1/2 module, in comparison with RAF1 membrane localization, may involve multiple rounds of cytosolic RAF1 rebinding to active RAS at the membrane. 
    more » « less