skip to main content


Title: Lifelong Learning in Costly Feature Spaces
An important long-term goal in machine learning systems is to build learning agents that, like humans, can learn many tasks over their lifetime, and moreover use information from these tasks to improve their ability to do so efficiently. In this work, our goal is to provide new theoretical insights into the potential of this paradigm. In particular, we propose a lifelong learning framework that adheres to a novel notion of resource efficiency that is critical in many real-world domains where feature evaluations are costly. That is, our learner aims to reuse information from previously learned related tasks to learn future tasks in a feature-efficient manner. Furthermore, we consider novel combinatorial ways in which learning tasks can relate. Specifically, we design lifelong learning algorithms for two structurally different and widely used families of target functions: decision trees/lists and monomials/polynomials. We also provide strong feature-efficiency guarantees for these algorithms; in fact, we show that in order to learn future targets, we need only slightly more feature evaluations per training example than what is needed to predict on an arbitrary example using those targets. We also provide algorithms with guarantees in an agnostic model where not all the targets are related to each other. Finally, we also provide lower bounds on the performance of a lifelong learner in these models, which are in fact tight under some conditions.  more » « less
Award ID(s):
1525971
PAR ID:
10057491
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
PMLR
Volume:
76
Page Range / eLocation ID:
250-287
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dasgupta, S. ; Haghtalab, N. (Ed.)
    We consider a lifelong learning scenario in which a learner faces a neverending and arbitrary stream of facts and has to decide which ones to retain in its limited memory. We introduce a mathematical model based on the online learning framework, in which the learner measures itself against a collection of experts that are also memory-constrained and that reflect different policies for what to remember. Interspersed with the stream of facts are occasional questions, and on each of these the learner incurs a loss if it has not remembered the corresponding fact. Its goal is to do almost as well as the best expert in hindsight, while using roughly the same amount of memory. We identify difficulties with using the multiplicative weights update algorithm in this memory-constrained scenario, and design an alternative scheme whose regret guarantees are close to the best possible. 
    more » « less
  2. In lifelong learning, tasks (or classes) to be learned arrive sequentially over time in arbitrary order. During training, knowledge from previous tasks can be captured and transferred to subsequent ones to improve sample efficiency. We consider the setting where all target tasks can be represented in the span of a small number of unknown linear or nonlinear features of the input data. We propose a lifelong learning algorithm that maintains and refines the internal feature representation. We prove that for any desired accuracy on all tasks, the dimension of the representation remains close to that of the underlying representation. The resulting sample complexity improves significantly on existing bounds. In the setting of linear features, our algorithm is provably efficient and the sample complexity for input dimension d, m tasks with k features up to error ϵ is O~(dk1.5/ϵ+km/ϵ). We also prove a matching lower bound for any lifelong learning algorithm that uses a single task learner as a black box. We complement our analysis with an empirical study, including a heuristic lifelong learning algorithm for deep neural networks. Our method performs favorably on challenging realistic image datasets compared to state-of-the-art continual learning methods. 
    more » « less
  3. Boosting is a widely used learning technique in machine learning for solving classification problems. In boosting, one predicts the label of an example using an ensemble of weak classifiers. While boosting has shown tremendous success on many classification problems involving tabular data, it performs poorly on complex classification tasks involving low-level features such as image classification tasks. This drawback stems from the fact that boosting builds an additive model of weak classifiers, each of which has very little predictive power. Often, the resulting additive models are not powerful enough to approximate the complex decision boundaries of real-world classification problems. In this work, we present a general framework for boosting where, similar to traditional boosting, we aim to boost the performance of a weak learner and transform it into a strong learner. However, unlike traditional boosting, our framework allows for more complex forms of aggregation of weak learners. In this work, we specifically focus on one form of aggregation - function composition. We show that many popular greedy algorithms for learning deep neural networks (DNNs) can be derived from our framework using function compositions for aggregation. Moreover, we identify the drawbacks of these greedy algorithms and propose new algorithms that fix these issues. Using thorough empirical evaluation, we show that our learning algorithms have superior performance over traditional additive boosting algorithms, as well as existing greedy learning techniques for DNNs. An important feature of our algorithms is that they come with strong theoretical guarantees. 
    more » « less
  4. We study the problem of online multi-task learning where the tasks are performed within similar but not necessarily identical multi-armed bandit environments. In particular, we study how a learner can improve its overall performance across multiple related tasks through robust transfer of knowledge. While an upper confidence bound (UCB)-based algorithm has recently been shown to achieve nearly-optimal performance guarantees in a setting where all tasks are solved concurrently, it remains unclear whether Thompson sampling (TS) algorithms, which have superior empirical performance in general, share similar theoretical properties. In this work, we present a TS-type algorithm for a more general online multi-task learning protocol, which extends the concurrent setting. We provide its frequentist analysis and prove that it is also nearly-optimal using a novel concentration inequality for multi-task data aggregation at random stopping times. Finally, we evaluate the algorithm on synthetic data and show that the TS-type algorithm enjoys superior empirical performance in comparison with the UCB-based algorithm and a baseline algorithm that performs TS for each individual task without transfer. 
    more » « less
  5. This paper revisits building machine learning algorithms that involve interactions between entities, such as those between financial assets in an actively managed portfolio, or interac- tions between users in a social network. Our goal is to forecast the future evolution of ensembles of multivariate time series in such applications (e.g., the future return of a financial asset or the future popularity of a Twitter account). Designing ML algorithms for such systems requires addressing the challenges of high-dimensional interactions and non-linearity. Existing approaches usually adopt an ad-hoc approach to integrating high-dimensional techniques into non-linear models and re- cent studies have shown these approaches have questionable efficacy in time-evolving interacting systems. To this end, we propose a novel framework, which we dub as the additive influence model. Under our modeling assump- tion, we show that it is possible to decouple the learning of high-dimensional interactions from the learning of non-linear feature interactions. To learn the high-dimensional interac- tions, we leverage kernel-based techniques, with provable guarantees, to embed the entities in a low-dimensional latent space. To learn the non-linear feature-response interactions, we generalize prominent machine learning techniques, includ- ing designing a new statistically sound non-parametric method and an ensemble learning algorithm optimized for vector re- gressions. Extensive experiments on two common applica- tions demonstrate that our new algorithms deliver significantly stronger forecasting power compared to standard and recently proposed methods. 
    more » « less