skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Formation of highly oxygenated low-volatility products from cresol oxidation
Hydroxyl radical (OH) oxidation of toluene produces ring-retaining products: cresol and benzaldehyde, and ring-opening products: bicyclic intermediate compounds and epoxides. Here, first- and later-generation OH oxidation products from cresol and benzaldehyde are identified in laboratory chamber experiments. For benzaldehyde, first-generation ring-retaining products are identified, but later-generation products are not detected. For cresol, low-volatility (saturation mass concentration, C* ∼ 3.5  ×  104 − 7.7  ×  10−3 µg m−3), first- and later-generation ring-retaining products are identified. Subsequent OH addition to the aromatic ring of o-cresol leads to compounds such as hydroxy, dihydroxy, and trihydroxy methyl benzoquinones and dihydroxy, trihydroxy, tetrahydroxy, and pentahydroxy toluenes. These products are detected in the gas phase by chemical ionization mass spectrometry (CIMS) and in the particle phase using offline direct analysis in real-time mass spectrometry (DART-MS). Our data suggest that the yield of trihydroxy toluene from dihydroxy toluene is substantial. While an exact yield cannot be reported as authentic standards are unavailable, we find that a yield for trihydroxy toluene from dihydroxy toluene of ∼ 0.7 (equal to the reported yield of dihydroxy toluene from o-cresol; Olariu et al., 2002) is consistent with experimental results for o-cresol oxidation under low-NO conditions. These results suggest that even though the cresol pathway accounts for only ∼ 20 % of the oxidation products of toluene, it is the source of a significant fraction (∼ 20–40 %) of toluene secondary organic aerosol (SOA) due to the formation of low-volatility products.  more » « less
Award ID(s):
1523500
NSF-PAR ID:
10057670
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
17
Issue:
5
ISSN:
1680-7324
Page Range / eLocation ID:
3453 to 3474
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effect of relative humidity (RH) on the chemical composition of secondary organic aerosol (SOA) formed from low-NOx toluene oxidation in the absence of seed particles was investigated. SOA samples were prepared in an aerosol smog chamber at < 2 % RH and 75 % RH, collected on Teflon filters, and analyzed with nanospray desorption electrospray ionization high-resolution mass spectrometry (nano-DESI–HRMS). Measurements revealed a significant reduction in the fraction of oligomers present in the SOA generated at 75 % RH compared to SOA generated under dry conditions. In a separate set of experiments, the particle mass concentrations were measured with a scanning mobility particle sizer (SMPS) at RHs ranging from < 2 to 90 %. It was found that the particle mass loading decreased by nearly an order of magnitude when RH increased from < 2 to 75–90 % for low-NOx toluene SOA. The volatility distributions of the SOA compounds, estimated from the distribution of molecular formulas using the molecular corridor approach, confirmed that low-NOx toluene SOA became more volatile on average under high-RH conditions. In contrast, the effect of RH on SOA mass loading was found to be much smaller for high-NOx toluene SOA. The observed increase in the oligomer fraction and particle mass loading under dry conditions were attributed to the enhancement of condensation reactions, which produce water and oligomers from smaller compounds in low-NOx toluene SOA. The reduction in the fraction of oligomeric compounds under humid conditions is predicted to partly counteract the previously observed enhancement in the toluene SOA yield driven by the aerosol liquid water chemistry in deliquesced inorganic seed particles. 
    more » « less
  2. Abstract. Aromatic hydrocarbons make up a large fraction of anthropogenic volatile organic compounds and contribute significantly to the production of tropospheric ozone and secondary organic aerosol (SOA). Four toluene and four 1,2,4-trimethylbenzene (1,2,4-TMB) photooxidation experiments were performed in an environmental chamber under relevantpolluted conditions (NOx∼10 ppb). An extensive suite of instrumentation including two proton-transfer-reaction mass spectrometers (PTR-MS) and two chemical ionisation mass spectrometers (NH4+ CIMS and I− CIMS) allowed for quantification of reactive carbon in multiple generations of hydroxyl radical (OH)-initiated oxidation. Oxidation of both species produces ring-retaining products such as cresols, benzaldehydes, and bicyclic intermediate compounds, as well as ring-scission products such as epoxides and dicarbonyls. We show that the oxidation of bicyclic intermediate products leads to the formation of compounds with high oxygen content (an O:C ratio of up to 1.1). These compounds, previously identified as highly oxygenated molecules (HOMs), are produced by more than one pathway with differing numbers of reaction steps with OH, including both auto-oxidation and phenolic pathways. We report the elemental composition of these compounds formed under relevant urban high-NO conditions. We show that ring-retaining products for these two precursors are more diverse and abundant than predicted by current mechanisms. We present the speciated elemental composition of SOA for both precursors and confirm that highly oxygenated products make up a significant fraction of SOA. Ring-scission products are also detected in both the gas and particle phases, and their yields and speciation generally agree with the kinetic model prediction. 
    more » « less
  3. Abstract. Secondary organic aerosol derived from isopreneepoxydiols (IEPOX-SOA) is thought to contribute the dominant fraction oftotal isoprene SOA, but the current volatility-based lumped SOAparameterizations are not appropriate to represent the reactive uptake ofIEPOX onto acidified aerosols. A full explicit modeling of this chemistryis however computationally expensive owing to the many species and reactionstracked, which makes it difficult to include it in chemistry–climate modelsfor long-term studies. Here we present three simplified parameterizations(version 1.0) for IEPOX-SOA simulation, based on an approximateanalytical/fitting solution of the IEPOX-SOA yield and formation timescale.The yield and timescale can then be directly calculated using the globalmodel fields of oxidants, NO, aerosol pH and other key properties, and drydeposition rates. The advantage of the proposed parameterizations is thatthey do not require the simulation of the intermediates while retaining thekey physicochemical dependencies. We have implemented the newparameterizations into the GEOS-Chem v11-02-rc chemical transport model,which has two empirical treatments for isoprene SOA (the volatility-basis-set, VBS, approach and a fixed 3 % yield parameterization), and comparedall of them to the case with detailed fully explicit chemistry. The bestparameterization (PAR3) captures the global tropospheric burden of IEPOX-SOAand its spatiotemporal distribution (R2=0.94) vs. thosesimulated by the full chemistry, while being more computationally efficient(∼5 times faster), and accurately captures the response tochanges in NOx and SO2 emissions. On the other hand, the constant3 % yield that is now the default in GEOS-Chem deviates strongly (R2=0.66), as does the VBS (R2=0.47, 49 % underestimation), withneither parameterization capturing the response to emission changes. Withthe advent of new mass spectrometry instrumentation, many detailed SOAmechanisms are being developed, which will challenge global and especiallyclimate models with their computational cost. The methods developed in thisstudy can be applied to other SOA pathways, which can allow includingaccurate SOA simulations in climate and global modeling studies in thefuture.

     
    more » « less
  4. Chemical mechanisms play an important role in simulating the atmospheric chemistry of volatile organic compound oxidation. Comparison of mechanism simulations with laboratory chamber data tests our level of understanding of the prevailing chemistry as well as the dynamic processes occurring in the chamber itself. α-Pinene photooxidation is a well-studied system experimentally, for which detailed chemical mechanisms have been formulated. Here, we present the results of simulating low-NO α-pinene photooxidation experiments conducted in the Caltech chamber with the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) under varying concentrations of seed particles and OH levels. Unexpectedly, experiments conducted at low and high OH levels yield the same secondary organic aerosol (SOA) growth, whereas GECKO-A predicts greater SOA growth under high OH levels. SOA formation in the chamber is a result of a competition among the rates of gas-phase oxidation to low-volatility products, wall deposition of these products, and condensation into the aerosol phase. Various processes – such as photolysis of condensed-phase products, particle-phase dimerization, and peroxy radical autoxidation – are explored to rationalize the observations. In order to explain the observed similar SOA growth at different OH levels, we conclude that vapor wall loss in the Caltech chamber is likely of order 10−5 s−1, consistent with previous experimental measurements in that chamber. We find that GECKO-A tends to overpredict the contribution to SOA of later-generation oxidation products under high-OH conditions. Moreover, we propose that autoxidation may alternatively resolve some or all of the measurement–model discrepancy, but this hypothesis cannot be confirmed until more explicit mechanisms are established for α-pinene autoxidation. The key role of the interplay among oxidation rate, product volatility, and vapor–wall deposition in chamber experiments is illustrated. 
    more » « less
  5. Abstract. Urbanization and deforestation have important impacts on atmosphericparticulate matter (PM) over Amazonia. This study presents observations andanalysis of PM1 concentration, composition, and opticalproperties in central Amazonia during the dry season, focusing on theanthropogenic impacts. The primary study site was located 70 km downwind ofManaus, a city of over 2 million people in Brazil, as part of theGoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol massspectrometer (AMS) provided data on PM1 composition, and aethalometermeasurements were used to derive the absorption coefficient babs,BrC ofbrown carbon (BrC) at 370 nm. Non-refractory PM1 mass concentrationsaveraged 12.2 µg m−3 at the primary study site, dominated byorganics (83 %), followed by sulfate (11 %). A decrease inbabs,BrC was observed as the mass concentration of nitrogen-containingorganic compounds decreased and the organic PM1 O:C ratio increased,suggesting atmospheric bleaching of the BrC components. The organic PM1was separated into six different classes by positive-matrix factorization(PMF), and the mass absorption efficiency Eabs associated with eachfactor was estimated through multivariate linear regression ofbabs,BrC on the factor loadings. The largest Eabs values wereassociated with urban (2.04±0.14 m2 g−1) and biomass-burning(0.82±0.04 to 1.50±0.07 m2 g−1) sources. Together, these sources contributed at least 80 % ofbabs,BrC while accounting for 30 % to 40 % of the organic PM1 massconcentration. In addition, a comparison of organic PM1 compositionbetween wet and dry seasons revealed that only part of the 9-foldincrease in mass concentration between the seasons can be attributed tobiomass burning. Biomass-burning factor loadings increased by 30-fold,elevating its relative contribution to organic PM1 from about 10 % inthe wet season to 30 % in the dry season. However, most of the PM1mass (>60 %) in both seasons was accounted for by biogenicsecondary organic sources, which in turn showed an 8-fold seasonalincrease in factor loadings. A combination of decreased wet deposition andincreased emissions and oxidant concentrations, as well as a positivefeedback on larger mass concentrations are thought to play a role in theobserved increases. Furthermore, fuzzy c-means clustering identified threeclusters, namely “baseline”, “event”, and “urban” to representdifferent pollution influences during the dry season. The baseline cluster,representing the dry season background, was associated with a mean massconcentration of 9±3 µg m−3. This concentration increasedon average by 3 µg m−3 for both the urban and the event clusters.The event cluster, representing an increased influence of biomass burningand long-range transport of African volcanic emissions, was characterized byremarkably high sulfate concentrations. The urban cluster, representing theinfluence of Manaus emissions on top of the baseline, was characterized byan organic PM1 composition that differed from the other two clusters.The differences discussed suggest a shift in oxidation pathways as well asan accelerated oxidation cycle due to urban emissions, in agreement withfindings for the wet season.

     
    more » « less