skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating the impact of atmospheric stability on thunderstorm outflow winds and turbulence
Downburst events initialized at various hours during the evening transition (ET) period are simulated to determine the effects of ambient stability on the outflow of downburst winds. The simulations are performed using a pseudo-spectral large eddy simulation model at high resolution to capture both the large-scale flow and turbulence characteristics of downburst winds. First, a simulation of the ET is performed to generate realistic initial and boundary conditions for the subsequent downburst simulations. At each hour in the ET, an ensemble of downburst simulations is initialized separately from the ET simulation in which an elevated cooling source within the model domain generates negatively buoyant air to mimic downburst formation. The simulations show that while the stability regime changes, the ensemble mean of the peak wind speed remains fairly constant (between 35 and 38 m s−1) and occurs at the lowest model level for each simulation. However, there is a slight increase in intensity and decrease in the spread of the maximum outflow winds as stability increases as well as an increase in the duration over which these strongest winds persist. This appears to be due to the enhanced maintenance of the ring vortex that results from the low-level temperature inversion, increased ambient shear, and a lack of turbulence within the stable cases. Coherent turbulent kinetic energy and wavelet spectral analysis generally show increased energy in the convective cases and that energy increases across all scales as the downburst passes.  more » « less
Award ID(s):
1336760
PAR ID:
10057741
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Wind Energy Science
Volume:
3
Issue:
1
ISSN:
2366-7451
Page Range / eLocation ID:
203 to 219
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, redistributing material throughout the circumgalatic medium. Non-thermal feedback from galactic cosmic rays (CRs) – high-energy charged particles accelerated in supernovae and young stars – can impact the efficiency of wind driving. The streaming instability limits the speed at which they can escape. However, in the presence of turbulence, the streaming instability is subject to suppression that depends on the magnetization of turbulence given by its Alfvén Mach number. While previous simulations that relied on a simplified model of CR transport have shown that super-Alfvénic streaming of CRs enhances galactic winds, in this paper we take into account a realistic model of streaming suppression. We perform three-dimensional magnetohydrodynamic simulations of a section of a galactic disc and find that turbulent damping dependent on local magnetization of turbulent interstellar medium (ISM) leads to more spatially extended gas and CR distributions compared to the earlier streaming calculations, and that scale heights of these distributions increase for stronger turbulence. Our results indicate that the star formation rate increases with the level of turbulence in the ISM. We also find that the instantaneous wind mass loading is sensitive to local streaming physics with the mass loading dropping significantly as the strength of turbulence increases. 
    more » « less
  2. Severe winds produced by thunderstorm downbursts pose a serious risk to the structural integrity of wind turbines. However, guidelines for wind turbine design (such as the International Electrotechnical Commission Standard, IEC 61400-1) do not describe the key physical characteristics of such events realistically. In this study, a large-eddy simulation model is employed to generate several idealized downburst events during contrasting atmospheric stability conditions that range from convective through neutral to stable. Wind and turbulence fields generated from this dataset are then used as inflow for a 5-MW land-based wind turbine model; associated turbine loads are estimated and compared for the different inflow conditions. We first discuss time-varying characteristics of the turbine-scale flow fields during the downbursts; next, we investigate the relationship between the velocity time series and turbine loads as well as the influence and effectiveness of turbine control systems (for blade pitch and nacelle yaw). Finally, a statistical analysis is conducted to assess the distinct influences of the contrasting stability regimes on extreme and fatigue loads on the wind turbine. 
    more » « less
  3. Thunderstorm downburst winds are a major cause of severe damage to buildings and other infrastructure. The initiative of the NSF-NHERI Wall of Wind (WOW) Experimental Facility to design and develop a downburst simulator was established to open new horizons for multi-hazard engineering research by extending the current capabilities of the facility to enable the simulation of non-synoptic winds. Five different downburst simulator designs have been tested in the 1:15 small-scale replica of the WOW to identify the optimal design. The design concepts tested herein considered both the 2-D impinging jet and the 2-D wall jet simulation methods. The basic design methodology consists of transforming the available atmospheric boundary layer (ABL) wind simulator into downburst winds by adding an external modification device to the exit of the flow management box. A flow characterization comparison among the five contending downburst simulators, along with comparisons to real downbursts and previous literature findings, has been conducted. The study on the effect of surface roughness length on the height of the peak wind velocity showed that the implementation of a 2-D plane wall jet enables large-scale outflows (higher peak velocity height) with high Reynold numbers, which is advantageous in terms of reducing scaling effects. In general, the current research work showed that four downburst simulation methods were suitable for adoption; however, only one downburst simulator was recommended based on the feasibility of construction in the facility. The chosen downburst simulator consisted of a two louver slat system near the bottom, with a blockage at the top. This configuration enables producing a large rolling vortex passing through the testing section, which would serve adequately in the further study of turbulent flow characterization and testing of larger scale test models. 
    more » « less
  4. Hurricanes have been the most expensive weather disaster in US history, causing over $1 trillion in damage since 1980. Despite significant progress in modeling hurricanes, our understanding of the turbulence dynamics of Hurricane Boundary Layers (HBLs) is still limited due to lack of sufficient measurement data and high-resolution simulations. The objective of this study is to address this knowledge gap using high-resolution Large-Eddy Simulations (LESs) of HBLs. In this presentation, we will characterize the role of rotation and surface waves on HBL mean and turbulence dynamics with the help of more than 40 unique LES runs in the parameter space of the problem. First, we will show that strong rotation in HBLs alters the turbulence structures by breaking down the large eddies into smaller eddies at the same elevation (Momen et al. 2021). The differences between regular Atmospheric Boundary Layers (ABLs) and HBLs will then be presented by contrasting comparative cases with and without rotational effects (Sabet et al. 2022). Next, the impacts of surface waves on HBL dynamics will be shown using wave-resolving LESs. It was found that surface waves significantly modulate the surface layer dynamics of HBLs compared to regular flat simulations as shown in the attached figure. Typical low wave ages enhance surface drag and decrease the HBL wind, while higher wave ages can intensify the local surface winds. Moreover, the Turbulent Kinetic Energy (TKE) is increased by the enhanced drag of young waves, while older higher speed waves can decrease the TKE compared to the flat case. We also found that higher wave heights, which are more prevalent in hurricanes, magnify these effects. This presentation will show that rotational and surface wave effects are two important factors that need to be simultaneously considered for the correct prediction of HBL winds. These insights can be useful for improving hurricane forecasts in numerical weather prediction models, ultimately aiding in disaster preparedness and mitigation efforts. References: Momen M, Parlange MB, Giometto MG (2021) Scrambling and reorientation of classical boundary layer turbulence in hurricane winds. Geo Res Let 48. Sabet F, Yi YR, Thomas L, Momen M (2022) Characterizing mean and turbulent structures of hurricane winds. Cen for Turb Res, Stanford, pp 311–321. 
    more » « less
  5. Abstract We investigate the interaction of turbulence with shock waves by performing 2D hybrid kinetic simulations. We inject force-free magnetic fields upstream that are unstable to the tearing-mode instability. The magnetic fields evolve into turbulence and interact with a shock wave whose sonic Mach number is 2.4. Turbulence properties, the total and normalized residual energy and the normalized cross helicity, change across the shock wave. While the energy of velocity and magnetic fluctuations is mostly distributed equally upstream, the velocity fluctuations are amplified dominantly downstream of the shock wave. The amplitude of turbulence spectra for magnetic, velocity, and density fluctuations are also increased at the shock wave while their spectral index remains unchanged. We compare our results with the Zank et al. model of turbulence transmission across a shock, and find that it provides a reasonable explanation for the spectral change across the shock wave. We find that particles are efficiently accelerated at the shock front, and a power-law spectrum forms downstream. This can be explained by diffusive shock acceleration, in which particles gain energy by being scattered upstream and downstream of a shock wave. The trajectory of an accelerated particle suggests that upstream turbulence plays a role scattering of particles. 
    more » « less