We introduce a method for measuring the correspondence between low-level speech features and human perception, using a cognitive model of speech perception implemented directly on speech recordings. We evaluate two speaker normalization techniques using this method and find that in both cases, speech features that are normalized across speakers predict human data better than unnormalized speech features, consistent with previous research. Results further reveal differences across normalization methods in how well each predicts human data. This work provides a new framework for evaluating low-level representations of speech on their match to human perception, and lays the groundwork for creating more ecologically valid models of speech perception.
more »
« less
A framework for evaluating speech representations
Listeners track distributions of speech sounds along perceptual dimensions. We introduce a method for evaluating hypotheses about what those dimensions are, using a cognitive model whose prior distribution is estimated directly from speech recordings. We use this method to evaluate two speaker normalization algorithms against human data. Simulations show that representations that are normalized across speakers predict human discrimination data better than unnormalized representations, consistent with previous research. Results further reveal differences across normalization methods in how well each predicts human data. This work provides a framework for evaluating hypothesized representations of speech and lays the groundwork for testing models of speech perception on natural speech recordings from ecologically valid settings.
more »
« less
- Award ID(s):
- 1320410
- PAR ID:
- 10057883
- Date Published:
- Journal Name:
- Proceedings of the Annual Conference of the Cognitive Science Society
- ISSN:
- 1069-7977
- Page Range / eLocation ID:
- 1919-1924
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
When we vocalize, our brain distinguishes self-generated sounds from external ones. A corollary discharge signal supports this function in animals, however, in humans its exact origin and temporal dynamics remain unknown. We report Electrocorticographic (ECoG) recordings in neurosurgical patients and a novel connectivity approach based on Granger-causality that reveals major neural communications. We find a reproducible source for corollary discharge across multiple speech production paradigms localized to ventral speech motor cortex before speech articulation. The uncovered discharge predicts the degree of auditory cortex suppression during speech, its well-documented consequence. These results reveal the human corollary discharge source and timing with far-reaching implication for speech motor-control as well as auditory hallucinations in human psychosis.more » « less
-
Integrating spatial context into large language models (LLMs) has the potential to revolutionize human-computer interaction, particularly in wearable devices. In this work, we present a novel system architecture that incorporates spatial speech understanding into LLMs, enabling contextually aware and adaptive applications for wearable technologies. Our approach leverages microstructure-based spatial sensing to extract precise Direction of Arrival (DoA) information using a monaural microphone. To address the lack of existing dataset for microstructure-assisted speech recordings, we synthetically create a dataset called OmniTalk by using the LibriSpeech dataset. This spatial information is fused with linguistic embeddings from OpenAI’s Whisper model, allowing each modality to learn complementary contextual representations. The fused embeddings are aligned with the input space of LLaMA-3.2 3B model and fine-tuned with lightweight adaptation technique LoRA to optimize for on-device processing.more » « less
-
We create a reusable Transformer, BrainBERT, for intracranial field potential recordings bringing modern representation learning approaches to neuroscience. Much like in NLP and speech recognition, this Transformer enables classifying complex concepts, i.e., decoding neural data, with higher accuracy and with much less data by being pretrained in an unsupervised manner on a large corpus of unannotated neural recordings. Our approach generalizes to new subjects with electrodes in new positions and to unrelated tasks showing that the representations robustly disentangle the neural signal. Just like in NLP where one can study language by investigating what a language model learns, this approach enables investigating the brain by studying what a model of the brain learns. As a first step along this path, we demonstrate a new analysis of the intrinsic dimensionality of the computations in different areas of the brain. To construct BrainBERT, we combine super-resolution spectrograms of neural data with an approach designed for generating contextual representations of audio by masking. In the future, far more concepts will be decodable from neural recordings by using representation learning, potentially unlocking the brain like language models unlocked language.more » « less
-
Neural speech tracking has advanced our understanding of how our brains rapidly map an acoustic speech signal onto linguistic representations and ultimately meaning. It remains unclear, however, how speech intelligibility is related to the corresponding neural responses. Many studies addressing this question vary the level of intelligibility by manipulating the acoustic waveform, but this makes it difficult to cleanly disentangle the effects of intelligibility from underlying acoustical confounds. Here, using magnetoencephalography recordings, we study neural measures of speech intelligibility by manipulating intelligibility while keeping the acoustics strictly unchanged. Acoustically identical degraded speech stimuli (three-band noise-vocoded, ~20 s duration) are presented twice, but the second presentation is preceded by the original (nondegraded) version of the speech. This intermediate priming, which generates a “pop-out” percept, substantially improves the intelligibility of the second degraded speech passage. We investigate how intelligibility and acoustical structure affect acoustic and linguistic neural representations using multivariate temporal response functions (mTRFs). As expected, behavioral results confirm that perceived speech clarity is improved by priming. mTRFs analysis reveals that auditory (speech envelope and envelope onset) neural representations are not affected by priming but only by the acoustics of the stimuli (bottom–up driven). Critically, our findings suggest that segmentation of sounds into words emerges with better speech intelligibility, and most strongly at the later (~400 ms latency) word processing stage, in prefrontal cortex, in line with engagement of top–down mechanisms associated with priming. Taken together, our results show that word representations may provide some objective measures of speech comprehension.more » « less