skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: A Corollary Discharge Circuit in Human Speech
When we vocalize, our brain distinguishes self-generated sounds from external ones. A corollary discharge signal supports this function in animals, however, in humans its exact origin and temporal dynamics remain unknown. We report Electrocorticographic (ECoG) recordings in neurosurgical patients and a novel connectivity approach based on Granger-causality that reveals major neural communications. We find a reproducible source for corollary discharge across multiple speech production paradigms localized to ventral speech motor cortex before speech articulation. The uncovered discharge predicts the degree of auditory cortex suppression during speech, its well-documented consequence. These results reveal the human corollary discharge source and timing with far-reaching implication for speech motor-control as well as auditory hallucinations in human psychosis.  more » « less
Award ID(s):
2309057
PAR ID:
10544717
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Bizley, Jennifer K. (Ed.)
    Hearing one’s own voice is critical for fluent speech production as it allows for the detection and correction of vocalization errors in real time. This behavior known as the auditory feedback control of speech is impaired in various neurological disorders ranging from stuttering to aphasia; however, the underlying neural mechanisms are still poorly understood. Computational models of speech motor control suggest that, during speech production, the brain uses an efference copy of the motor command to generate an internal estimate of the speech output. When actual feedback differs from this internal estimate, an error signal is generated to correct the internal estimate and update necessary motor commands to produce intended speech. We were able to localize the auditory error signal using electrocorticographic recordings from neurosurgical participants during a delayed auditory feedback (DAF) paradigm. In this task, participants hear their voice with a time delay as they produced words and sentences (similar to an echo on a conference call), which is well known to disrupt fluency by causing slow and stutter-like speech in humans. We observed a significant response enhancement in auditory cortex that scaled with the duration of feedback delay, indicating an auditory speech error signal. Immediately following auditory cortex, dorsal precentral gyrus (dPreCG), a region that has not been implicated in auditory feedback processing before, exhibited a markedly similar response enhancement, suggesting a tight coupling between the 2 regions. Critically, response enhancement in dPreCG occurred only during articulation of long utterances due to a continuous mismatch between produced speech and reafferent feedback. These results suggest that dPreCG plays an essential role in processing auditory error signals during speech production to maintain fluency. 
    more » « less
  2. Primary auditory cortex is a critical stage in the human auditory pathway, a gateway between subcortical and higher-level cortical areas. Receiving the output of all subcortical processing, it sends its output on to higher-level cortex. Non-invasive physiological recordings of primary auditory cortex using electroencephalography (EEG) and magnetoencephalography (MEG), however, may not have sufficient specificity to separate responses generated in primary auditory cortex from those generated in underlying subcortical areas or neighboring cortical areas. This limitation is important for investigations of effects of top-down processing (e.g., selective-attention-based) on primary auditory cortex: higher-level areas are known to be strongly influenced by top-down processes, but subcortical areas are often assumed to perform strictly bottom-up processing. Fortunately, recent advances have made it easier to isolate the neural activity of primary auditory cortex from other areas. In this perspective, we focus on time-locked responses to stimulus features in the high gamma band (70–150 Hz) and with early cortical latency (∼40 ms), intermediate between subcortical and higher-level areas. We review recent findings from physiological studies employing either repeated simple sounds or continuous speech, obtaining either a frequency following response (FFR) or temporal response function (TRF). The potential roles of top-down processing are underscored, and comparisons with invasive intracranial EEG (iEEG) and animal model recordings are made. We argue that MEG studies employing continuous speech stimuli may offer particular benefits, in that only a few minutes of speech generates robust high gamma responses from bilateral primary auditory cortex, and without measurable interference from subcortical or higher-level areas. 
    more » « less
  3. Music and speech are encountered daily and are unique to human beings. Both are transformed by the auditory pathway from an initial acoustical encoding to higher level cognition. Studies of cortex have revealed distinct brain responses to music and speech, but differences may emerge in the cortex or may be inherited from different subcortical encoding. In the first part of this study, we derived the human auditory brainstem response (ABR), a measure of subcortical encoding, to recorded music and speech using two analysis methods. The first method, described previously and acoustically based, yielded very different ABRs between the two sound classes. The second method, however, developed here and based on a physiological model of the auditory periphery, gave highly correlated responses to music and speech. We determined the superiority of the second method through several metrics, suggesting there is no appreciable impact of stimulus class (i.e., music vs speech) on the way stimulus acoustics are encoded subcortically. In this study’s second part, we considered the cortex. Our new analysis method resulted in cortical music and speech responses becoming more similar but with remaining differences. The subcortical and cortical results taken together suggest that there is evidence for stimulus-class dependent processing of music and speech at the cortical but not subcortical level. 
    more » « less
  4. Across the animal kingdom, neural responses in the auditory cortex are suppressed during vocalization, and humans are no exception. A common hypothesis is that suppression increases sensitivity to auditory feedback, enabling the detection of vocalization errors. This hypothesis has been previously confirmed in non-human primates, however a direct link between auditory suppression and sensitivity in human speech monitoring remains elusive. To address this issue, we obtained intracranial electroencephalography (iEEG) recordings from 35 neurosurgical participants during speech production. We first characterized the detailed topography of auditory suppression, which varied across superior temporal gyrus (STG). Next, we performed a delayed auditory feedback (DAF) task to determine whether the suppressed sites were also sensitive to auditory feedback alterations. Indeed, overlapping sites showed enhanced responses to feedback, indicating sensitivity. Importantly, there was a strong correlation between the degree of auditory suppression and feedback sensitivity, suggesting suppression might be a key mechanism that underlies speech monitoring. Further, we found that when participants produced speech with simultaneous auditory feedback, posterior STG was selectively activated if participants were engaged in a DAF paradigm, suggesting that increased attentional load can modulate auditory feedback sensitivity. 
    more » « less
  5. Stuttering is a neurodevelopmental speech disorder associated with motor timing that differs from non-stutterers. While neurodevelopmental disorders impacted by timing are associated with compromised auditory-motor integration and interoception, the interplay between those abilities and stuttering remains unexplored. Here, we studied the relationships between speech auditory-motor synchronization (a proxy for auditory-motor integration), interoceptive awareness, and self-reported stuttering severity using remotely delivered assessments. Results indicate that in general, stutterers and non-stutterers exhibit similar auditory-motor integration and interoceptive abilities. However, while speech auditory-motor synchrony (i.e., integration) and interoceptive awareness were not related, speech synchrony was inversely related to the speaker’s perception of stuttering severity as perceived by others, and interoceptive awareness was inversely related to self-reported stuttering impact. These findings support claims that stuttering is a heterogeneous, multi-faceted disorder such that uncorrelated auditory-motor integration and interoception measurements predicted different aspects of stuttering, suggesting two unrelated sources of timing differences associated with the disorder. 
    more » « less