In a software system’s development lifecycle, engineers make numerous design decisions that subsequently cause architectural change in the system. Previous studies have shown that, more often than not, these architectural changes are unintentional by-products of continual software maintenance tasks. The result of inadvertent architectural changes is accumulation of technical debt and deterioration of software quality. Despite their important implications, there is a relative shortage of techniques, tools, and empirical studies pertaining to architectural design decisions. In this paper, we take a step toward addressing that scarcity by using the information in the issue and code repositories of open-source software systems to investigate the cause and frequency of such architectural design decisions. Furthermore, building on these results, we develop a predictive model that is able to identify the architectural significance of newly submitted issues, thereby helping engineers to prevent the adverse effects of architectural decay. The results of this study are based on the analysis of 21,062 issues affecting 301 versions of 5 large open-source systems for which the code changes and issues were publicly accessible.
more »
« less
Recovering Architectural Design Decisions
Designing and maintaining a software system’s architecture typically involve making numerous design decisions, each potentially affecting the system’s functional and nonfunctional properties. Understanding these design decisions can help inform future decisions and implementation choices and can avoid introducing regressions and architectural inefficiencies later. Unfortunately, design decisions are rarely well documented and are typically a lost artifact of the architecture creation and maintenance process. The loss of this information can thus hurt development. To address this shortcoming, we develop RecovAr, a technique for automatically recovering design decisions from the project’s readily available history artifacts, such as an issue tracker and version control repository. RecovAr uses state-ofthe- art architectural recovery techniques on a series of version control commits and maps those commits to issues to identify decisions that affect system architecture. While some decisions can still be lost through this process, our evaluation on Hadoop and Struts, two large open-source systems with over 8 years of development each and, on average, more than 1 million lines of code, shows that RecovAr has the recall of 75% and a precision of 77%. Our work formally defines architectural design decisions and develops an approach for tracing such decisions in project histories. Additionally, the work introduces methods to classify whether decisions are architectural and to map decisions to code elements. Finally, our work contributes a methodology engineers can follow to preserve design-decision knowledge in their projects.
more »
« less
- Award ID(s):
- 1618231
- PAR ID:
- 10057887
- Date Published:
- Journal Name:
- International Conference on Software Architecture
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Many techniques were proposed for detecting software misconfigurations in cloud systems and for diagnosing unintended behavior caused by such misconfigurations. Detection and diagnosis are steps in the right direction: misconfigurations cause many costly failures and severe performance issues. But, we argue that continued focus on detection and diagnosis is symptomatic of a more serious problem: configuration design and implementation are not yet first-class software engineering endeavors in cloud systems. Little is known about how and why developers evolve configuration design and implementation, and the challenges that they face in doing so. This paper presents a source-code level study of the evolution of configuration design and implementation in cloud systems. Our goal is to understand the rationale and developer practices for revising initial configuration design/implementation decisions, especially in response to consequences of misconfigurations. To this end, we studied 1178 configuration-related commits from a 2.5 year version-control history of four large-scale, actively-maintained open-source cloud systems (HDFS, HBase, Spark, and Cassandra). We derive new insights into the software configuration engineering process. Our results motivate new techniques for proactively reducing misconfigurations by improving the configuration design and implementation process in cloud systems. We highlight a number of future research directions.more » « less
-
In order to understand the state and evolution of the entirety of open source software we need to get a handle on the set of distinct software projects. Most of open source projects presently utilize Git, which is a distributed version control system allowing easy creation of clones and resulting in numerous repositories that are almost entirely based on some parent repository from which they were cloned. Git commits are unlikely to get produce and represent a way to group cloned repositories. We use World of Code infrastructure containing approximately 2B commits and 100M repositories to create and share such a map. We discover that the largest group contains almost 14M repositories most of which are unrelated to each other. As it turns out, the developers can push git object to an arbitrary repository or pull objects from unrelated repositories, thus linking unrelated repositories. To address this, we apply Louvain community detection algorithm to this very large graph consisting of links between commits and projects. The approach successfully reduces the size of the megacluster with the largest group of highly interconnected projects containing under 400K repositories. We expect that the resulting map of related projects as well as tools and methods to handle the very large graph will serve as a reference set for mining software projects and other applications. Further work is needed to determine different types of relationships among projects induced by shared commits and other relationships, for example, by shared source code or similar filenames.more » « less
-
Rafferty, Anna N.; Whitehill, Jacob; Cavalli-Sforza, Violetta; Romero, Cristobal (Ed.)Teamwork, often mediated by version control systems such as Git and Apache Subversion (SVN), is central to professional programming. As a consequence, many colleges are incorporating both collaboration and online development environments into their curricula even in introductory courses. In this research, we collected GitHub logs from two programming projects in two offerings of a CS2 Java programming course for computer science majors. Students worked in pairs for both projects (one optional, the other mandatory) in each year. We used the students’ GitHub history to classify the student teams into three groups, collaborative, cooperative, or solo-submit, based on the division of labor. We then calculated different metrics for students’ teamwork including the total number and the average number of commits in different parts of the projects and used these metrics to predict the students’ teamwork style. Our findings show that we can identify the students’ teamwork style automatically from their submission logs. This work helps us to better understand novices’ habits while using version control systems. These habits can identify the harmful working styles among them and might lead to the development of automatic scaffolds for teamwork and peer support in the future.more » « less
-
Code changes are often reviewed before they are deployed. Popular source control systems aid code review by presenting textual differences between old and new versions of the code, leaving developers with the difficult task of determining whether the differences actually produced the desired behavior. Fortunately, we can mine such information from code repositories. We propose aiding code review with inter-version semantic differential analysis. During review of a new commit, a developer is presented with summaries of both code differences and behavioral differences, which are expressed as diffs of likely invariants extracted by running the system's test cases. As a result, developers can more easily determine that the code changes produced the desired effect. We created an invariant-mining tool chain, GETTY, to support our concept of semantically-assisted code review. To validate our approach, 1) we applied GETTY to the commits of 6 popular open source projects, 2) we assessed the performance and cost of running GETTY in different configurations, and 3) we performed a comparative user study with 18 developers. Our results demonstrate that semantically-assisted code review is feasible, effective, and that real programmers can leverage it to improve the quality of their reviews.more » « less
An official website of the United States government

