skip to main content


Title: Inferring Crustal Viscosity from Seismic Wavespeeds: Applications to the Rheologic Structure of the Himalayas
We constrain the viscosity of the lower crust through a joint inversion of seismic P-wave (Vp) and S-wave (Vs) velocities. Previous research has demonstrated robust relationships between seismic velocity and crustal composition, as well as between the composition and viscosity of the lower crust. Here we extend these analyses, showing seismic velocity can be used as a robust indicator of crustal viscosity. First, we use the Gibbs free energy minimization routine Perple_X to calculate equilibrium mineral assemblages for a global compilation of crustal rocks at various pressures and temperatures. Second, we use a rheological mixing model that combines single-phase flow laws for major crust-forming minerals to calculate bulk viscosity from the predicted mineral assemblages incorporating the effects of strain rate, temperature, pressure, and water activity. We apply our method to regional seismic and heat flow data across East Asia in order to separate the relative variations in mid-crustal viscosity associated with composition and temperature. In some regions, temperature variations are the dominant influence on viscosity; e.g., we predict a 3 order of magnitude increase in viscosity between the low heat flow Sichuan Basin and higher heat flow surrounding regions. These viscosity variations are consistent with those previously inferred to produce the different topographic gradients in these areas [1]. However in constant heat flow regions, compositional variations exert the primary influence on viscosity; e.g., the North China Craton and the Yangtze Craton are predicted to have compositionally-controlled viscosities ranging from 1022–1023 Pa×s. Finally, the regional Vp/Vs ratios in the Tibetan Plateau cannot be explained by thermal and/or compositional variations alone, possibly indicating the presence of melt, which would lead to additional viscosity reductions. [1] Clark & Royden, Geology, 2000.  more » « less
Award ID(s):
1722932 1624109 1844340
NSF-PAR ID:
10058030
Author(s) / Creator(s):
Date Published:
Journal Name:
Transactions - American Geophysical Union
ISSN:
0002-8606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study provides a global assessment of the abundance of the major oxides in the deep continental crust. The combination of geochemistry and seismology better constrains the composition of the middle and lower continental crust better than either discipline can achieve alone. The inaccessible nature of the deep crust (typically >15 km) forces reliance on analog samples and modeling results to interpret its bulk composition, evolution, and physical properties. A common practice relates major oxide compositions of small‐ to medium‐scale samples (e.g., medium to high metamorphic grade terrains and xenoliths) to large scale measurements of seismic velocities (Vp, Vs, Vp/Vs) to determine the composition of the deep crust. We provide a framework for building crustal models with multidisciplinary constraints on composition. We present a global deep crustal model that documents compositional changes with depth and accounts for uncertainties in Moho depth, temperature, and physical and chemical properties. Our 3D compositional model of the deep crust uses the USGS Global Seismic Structure Catalog (Mooney, 2015) and a compilation of geochemical analyses on amphibolite and granulite facies lithologies (Sammon & McDonough, 2021,https://doi.org/10.1029/2021JB022791). We find a SiO2gradient from 61.2 ± 7.3 to 53.3 ± 4.8 wt.% from the middle to the base of the crust, with the equivalent lithological gradient ranging from quartz monzonite to gabbronorite. In addition, we calculate trace element abundances as a function of depth from their correlations with major oxides. From here, other lithospheric properties, such as Moho heat flux ( mW/m2), are derived.

     
    more » « less
  2. Abstract

    The composition of the lower continental crust is well studied but poorly understood because of the difficulty of sampling large portions of it. Petrological and geochemical analyses of this deepest portion of the continental crust are limited to the study of high‐grade metamorphic lithologies, such as granulite. In situ lower crustal studies require geophysical experiments to determine regional‐scale phenomena. Since geophysical properties, such as shear wave velocity (Vs), are nonunique among different compositions and temperatures, the most informative lower crustal models combine both geochemical and geophysical knowledge. We explored a combined modeling technique by analyzing the Basin and Range and Colorado Plateau of the United States, a region for which plentiful geochemical and geophysical data are available. By comparing seismic velocity predictions based on composition and thermodynamic principles to ambient noise inversions, we identified three compositional trends in the southwestern United States that reflect three different geologic settings. The Colorado Plateau (thick crust), Northern Basin and Range (medium crust), and Southern Basin and Range (thin crust) have intermediate, intermediate‐mafic, and mafic deep crustal compositions. Identifying the composition of the lower crust depends heavily on its temperature because of the effect it has on rock mineralogy and physical properties. In this region, we see evidence for a lower crust that overall is intermediate‐mafic in composition (53.77.2 wt.% SiO) and notably displays a gradient of decreasing SiOwith depth.

     
    more » « less
  3. Abstract

    Localized frictional sliding on faults in the continental crust transitions at depth to distributed deformation in viscous shear zones. This brittle‐ductile transition (BDT), and/or the transition from velocity‐weakening (VW) to velocity‐strengthening (VS) friction, are controlled by the lithospheric thermal structure and composition. Here, we investigate these transitions, and their effect on the depth extent of earthquakes, using 2D antiplane shear simulations of a strike‐slip fault with rate‐and‐state friction. The off‐fault material is viscoelastic, with temperature‐dependent dislocation creep. We solve the heat equation for temperature, accounting for frictional and viscous shear heating that creates a thermal anomaly relative to the ambient geotherm which reduces viscosity and facilitates viscous flow. We explore several geotherms and effective normal stress distributions (by changing pore pressure), quantifying the thermal anomaly, seismic and aseismic slip, and the transition from frictional sliding to viscous flow. The thermal anomaly can reach several hundred degrees below the seismogenic zone in models with hydrostatic pressure but is smaller for higher pressure (and these high‐pressure models are most consistent with San Andreas Fault heat flow constraints). Shear heating raises the BDT, sometimes to where it limits rupture depth rather than the frictional VW‐to‐VS transition. Our thermomechanical modeling framework can be used to evaluate lithospheric rheology and thermal models through predictions of earthquake ruptures, postseismic and interseismic crustal deformation, heat flow, and the geological structures that reflect the complex deformation beneath faults.

     
    more » « less
  4. Abstract

    Mount St. Helens (MSH) lies in the forearc of the Cascades where conditions should be too cold for volcanism. To better understand thermal conditions and magma pathways beneath MSH, data from a dense broadband array are used to produce high‐resolution tomographic images of the crust and upper mantle. Rayleigh‐wave phase‐velocity maps and three‐dimensional images of shear velocity (Vs), generated from ambient noise and earthquake surface waves, show that west of MSH the middle‐lower crust is anomalously fast (3.95 ± 0.1 km/s), overlying an anomalously slow uppermost mantle (4.0–4.2 km/s). This combination renders the forearc Moho weak to invisible, with crustal velocity variations being a primary cause; fast crust is necessary to explain the absent Moho. Comparison with predicted rock velocities indicates that the fast crust likely consists of gabbros and basalts of the Siletzia terrane, an accreted oceanic plateau. East of MSH where magmatism is abundant, middle‐lower crustVsis low (3.45–3.6 km/s), consistent with hot and potentially partly molten crust of more intermediate to felsic composition. This crust overlies mantle with more typical wave speeds, producing a strong Moho. The sharp boundary in crust and mantleVswithin a few kilometers of the MSH edifice correlates with a sharp boundary from low heat flow in the forearc to high arc heat flow and demonstrates that the crustal terrane boundary here couples with thermal structure to focus lateral melt transport from the lower crust westward to arc volcanoes.

     
    more » « less
  5. null (Ed.)
    SUMMARY Interfaces are important part of Earth’s layering structure. Here, we developed a new model parametrization and iterative linearized inversion method that determines 1-D crustal velocity structure using surface wave dispersion, teleseismic P-wave receiver functions and Ps and PmP traveltimes. Unlike previous joint inversion methods, the new model parametrization includes interface depths and layer Vp/Vs ratios so that smoothness constraint can be conveniently applied to velocities of individual layers without affecting the velocity discontinuity across the interfaces. It also allows adding interface-related observation such as traveltimes of Ps and PmP in the joint inversion to eliminate the trade-off between interface depth and Vp/Vs ratio and therefore to reduce the uncertainties of results. Numerical tests show that the method is computationally efficient and the inversion results are robust and independent of the initial model. Application of the method to a dense linear array across the Wabash Valley Seismic Zone (WVSZ) produced a high-resolution crustal image in this seismically active region. The results show a 51–55-km-thick crust with a mid-crustal interface at 14–17 km. The crustal Vp/Vs ratio varies from 1.69 to 1.90. There are three pillow-like, ∼100 km apart high-velocity bodies sitting at the base of the crust and directly above each of them are a low-velocity anomaly in the middle crust and a high-velocity anomaly in the upper crust. They are interpreted to be produced by mantle magmatic intrusions and remelting during rifting events in the end of the Precambrian. The current diffuse seismicity in the WVSZ might be rooted in this ancient distributed rifting structure. 
    more » « less