skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: One-bit digital radar
This paper introduces a one-bit digital radar involving direct one-bit sampling with unknown dithering of the received radio frequency (RF) signal. Due to avoiding the analog mixer and the down-conversion of the RF signal, the digital radar can be energy-efficient and low-priced. The use of unknown dithering allows for the one-bit samples to be processed efficiently using conventional algorithms. A computationally efficient range-Doppler estimation method based on fractional Fourier transform (FRFT) and fast Fourier transform (FFT) is used for linear frequency modulated continuous wave (LFMCW) transmissions, and the CLEAN algorithm is used for target parameter estimation.  more » « less
Award ID(s):
1708509
NSF-PAR ID:
10058047
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Signals, Systems, and Computers, 2017 51st Asilomar Conference on
Page Range / eLocation ID:
1142 to 1146
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The expansion of telecommunications incurs increasingly severe crosstalk and interference, and a physical layer cognitive method, called blind source separation (BSS), can effectively address these issues. BSS requires minimal prior knowledge to recover signals from their mixtures, agnostic to the carrier frequency, signal format, and channel conditions. However, previous electronic implementations did not fulfil this versatility due to the inherently narrow bandwidth of radio-frequency (RF) components, the high energy consumption of digital signal processors (DSP), and their shared weaknesses of low scalability. Here, we report a photonic BSS approach that inherits the advantages of optical devices and fully fulfils its “blindness” aspect. Using a microring weight bank integrated on a photonic chip, we demonstrate energy-efficient, wavelength-division multiplexing (WDM) scalable BSS across 19.2 GHz processing bandwidth. Our system also has a high (9-bit) resolution for signal demixing thanks to a recently developed dithering control method, resulting in higher signal-to-interference ratios (SIR) even for ill-conditioned mixtures.

     
    more » « less
  2. null (Ed.)
    The stochastic behavior of magnetic tunnel junctions (MTJ) finds use in many applications - from analog-to- digital conversion to neuromorphic computing. In this paper, a dithering method exploiting the stochastic behavior of an MTJ, based on the voltage controlled magnetic anisotropy effect, is proposed. This method is used to measure low frequency analog signals over an interval. The circuit is composed of two MTJ devices that convert an analog signal into a series of high resistance and low resistance stochastic states, creating a dithering effect. The behavior of the input signal is extracted from the switching frequency. The binary nature of the output signal reduces the complexity, enabling a small, fast, and energy efficient circuit for extracting different forms of information from an analog signal. 
    more » « less
  3. The radio spectrum is a scarce and extremely valuable resource that demands careful real-time monitoring and dynamic resource allocation. Dynamic spectrum access (DSA) is a new paradigm for managing the radio spectrum, which requires AI/ML-driven algorithms for optimum performance under rapidly changing channel conditions and possible cyber-attacks in the electromagnetic domain. Fast sensing across multiple directions using array processors, with subsequent AI/ML-based algorithms for the sensing and perception of waveforms that are measured from the environment is critical for providing decision support in DSA. As part of directional and wideband spectrum perception, the ability to finely channelize wideband inputs using efficient Fourier analysis is much needed. However, a fine-grain fast Fourier transform (FFT) across a large number of directions is computationally intensive and leads to a high chip area and power consumption. We address this issue by exploiting the recently proposed approximate discrete Fourier transform (ADFT), which has its own sparse factorization for real-time implementation at a low complexity and power consumption. The ADFT is used to create a wideband multibeam RF digital beamformer and temporal spectrum-based attention unit that monitors 32 discrete directions across 32 sub-bands in real-time using a multiplierless algorithm with low computational complexity. The output of this spectral attention unit is applied as a decision variable to an intelligent receiver that adapts its center frequency and frequency resolution via FFT channelizers that are custom-built for real-time monitoring at high resolution. This two-step process allows the fine-gain FFT to be applied only to directions and bands of interest as determined by the ADFT-based low-complexity 2D spacetime attention unit. The fine-grain FFT provides a spectral signature that can find future use cases in neural network engines for achieving modulation recognition, IoT device identification, and RFI identification. Beamforming and spectral channelization algorithms, a digital computer architecture, and early prototypes using a 32-element fully digital multichannel receiver and field programmable gate array (FPGA)-based high-speed software-defined radio (SDR) are presented.

     
    more » « less
  4. We develop a method to jointly estimate the carrier frequency offset (CFO) and the narrowband channel in millimeter wave (mmWave) MIMO systems operating with one-bit analog-to-digital converters (ADCs). We assume perfect timing synchronization and transform the underlying CFO-channel optimization problem to a higher dimensional space using lifting techniques. Exploiting the sparse nature of mmWave MIMO channels in the angle domain, we perform the joint estimation by solving a noisy quantized compressed sensing problem of the lifted version, using generalized approximate message passing. Simulation results show that our method is able to recover both the channel and the CFO using one-bit measurements. 
    more » « less
  5. Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distribution network, 4) power and area estimation based on state-of-the-art mmW circuits including baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators, mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation results show that the fully-digital array architecture is the most power and area efficient compared against optimized designs for sub-array and hybrid array architectures. Our analysis shows that digital array architecture benefits greatly from multi-user multiplexing. The analysis also reveals that sub-array architecture performance is limited by reduced beamforming gain due to array partitioning, while the system bottleneck of the fully-connected hybrid architecture is the excessively complicated and power hungry RF signal distribution network. 
    more » « less