Peptidyl thioesters or their surrogates with C-terminal β-branched hydrophobic amino acid residues usually exhibit poor reactivities in ligation reactions. Thus, activation using exogenous additives is required to ensure an acceptable reaction efficiency. Herein, we report a traceless ligation at Val-Xaa sites under mild thiol additive-free reaction conditions, whereby the introduction of β-mercaptan on the C-terminal valine residue effectively activates the otherwise unreactive N -acyl-benzimidazolinone (Nbz), and enables the use of a one-pot ligation–desulfurization strategy to generate the desired peptide products. The orthogonality between β-thiovaline-Nbz and a conventional alkyl thioester, as well as the convenient access to the former from readily available penicillamine, also allowed expedited assembly of the peptidic hormone β-LPH and hPTH analogues, based on a kinetically controlled one-pot three-segment ligation and desulfurization strategy.
more »
« less
Coupling of sterically demanding peptides by β-thiolactone-mediated native chemical ligation
The ligation of sterically demanding peptidyl sites such as those involving Val–Val and Val–Pro linkages has proven to be extremely challenging with conventional NCL methods that rely on exogenous thiol additives. Herein, we report an efficient β-thiolactone-mediated additive-free NCL protocol that enables the establishment of these connections in good yield. The rapid NCL was followed by in situ desulfurization. Reaction rates between β-thiolactones and conventional thioesters towards NCL were also investigated, and direct aminolysis was ruled out as a possible pathway. Finally, the potent cytotoxic cyclic-peptide axinastatin 1 has been prepared using the developed methodology.
more »
« less
- Award ID(s):
- 1710174
- PAR ID:
- 10058196
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 9
- Issue:
- 7
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 1982 to 1988
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
α-Ga2O3 has the corundum structure analogous to that of α-Al2O3. The bandgap energy of α-Ga2O3 is 5.3 eV and is greater than that of β-Ga2O3, making the α-phase attractive for devices that benefit from its wider bandgap. The O-H and O-D centers produced by the implantation of H+ and D+ into α-Ga2O3 have been studied by infrared spectroscopy and complementary theory. An O-H line at 3269 cm-1 is assigned to H complexed with a Ga vacancy (VGa), similar to the case of H trapped by an Al vacancy (VAl) in α-Al2O3. The isolated VGa and VAl defects in α-Ga2O3 and α-Al2O3 are found by theory to have a “shifted” vacancy-interstitial-vacancy equlibrium configuration, similar to VGa in β-Ga2O3 which also has shifted structures. However, the addition of H causes the complex with H trapped at an unshifted vacancy to have the lowest energy in both α-Ga2O3 and α-Al2O3.more » « less
-
Native chemical ligation (NCL) at proline has been limited by cost and synthetic access. In addition, prior examples of NCL using mercaptoproline have exhibited stalling of the reaction after thioester exchange, due to inefficient SN acyl transfer. Herein, we develop methods, using inexpensive Boc-4R-hydroxyproline, for the solid-phase synthesis of peptides containing N-terminal 4R-mercaptoproline and 4R-selenoproline. The synthesis proceeds via proline editing on the N-terminus of fully synthesized peptides on the solid phase, converting an N-terminal Boc-4R-hydroxyproline to the 4S-bromoproline, followed by SN2 reaction with potassium thioacetate or selenobenzoic acid. After cleavage from the resin and deprotection, peptides with functionalized N-terminal proline amino acids were obtained. NCL reactions with mercaptoproline proceeded slowly under standard NCL conditions, with the S-acyl transthioesterification intermediate observed as a major species. Computational investigations indicated that the bicyclic intermediates and transition states for SN acyl transfer are sufficiently low in energy (10-15 kcal mol–1 above starting material) that ring strain cannot explain slow SN acyl transfer. Instead, the bicyclic zwitterionic tetrahedral intermediate has a low barrier for reversion to the S-acyl intermediate, causing reversion to the thioester (reverse reaction) to occur preferentially over elimination to generate the amide (forward reaction). We hypothesized that a buffer capable of general acid and/or general base catalysis could promote SN acyl transfer, and thus achieve greater efficiency in proline NCL. In the presence of 2 M imidazole at pH 6.8, NCL with mercaptoproline proceeded efficiently to generate the peptide with a native amide bond. NCL with selenoproline also proceeded efficiently to generate the desired products when a thiophenol thioester was employed as a ligation partner. After desulfurization or deselenization, the products obtained were identical to those synthesized directly, confirming that the solid-phase proline editing reactions proceeded stereospecifically and without epimerization.more » « less
-
null (Ed.)Nowotny chimney ladder (NCL) phases are intermetallic compounds formed by transition metals and metals of groups 13 and 14. This family can be expanded by combining two p-elements from different groups with those transition metals, for which the corresponding binary NCL phases are unknown. In this paper, we present three new compounds in the V-Al-Ge, Nb-Al-Ge, and Nb-Ga-Ge systems related to the TiSi2 structure type (Sp. Gr. Fddd) obtained with the standard ampule technique. The crystal structures of the new compounds were determined using synchrotron powder X-ray diffraction data. A transition to the CrSi2 structure type was detected upon changing the composition from VAl0.72(2)Ge1.28(2) to VAl1.534(3)Ge0.466(3). According to the 18–n rule, all the compounds are metallic conductors, which was supported by the electronic structure calculations. It was shown that the expected energy gap located above the Fermi level in the vanadium-based NCL compound collapsed into a pseudogap upon the replacement of V by Nb.more » « less
-
2,5-diketopiperazines (DKPs) are cyclic dipeptides ubiquitously found in nature. In particular, cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro) are frequently detected in many microbial cultures. Each of these DKPs has four possible stereoisomers due to the presence of two chirality centers. However, absolute configurations of natural DKPs are often ambiguous due to the lack of a simple, sensitive, and reproducible method for stereochemical assignment. This is an important problem because stereochemistry is a key determinant of biological activity. Here, we report a synthetic DKP library containing all stereoisomers of cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro). The library was subjected to spectroscopic characterization using mass spectrometry, NMR, and electronic circular dichroism (ECD). It turned out that ECD can clearly differentiate DKP stereoisomers. Thus, our ECD dataset can serve as a reference for unambiguous stereochemical assignment of cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro) samples from natural sources. The DKP library was also subjected to a biological screening using assays for E. coli growth and biofilm formation, which revealed distinct biological effects of cyclo(D-Phe-L-Pro).more » « less
An official website of the United States government

