skip to main content


Title: H trapping at the metastable cation vacancy in α-Ga2O3 and α-Al2O3
α-Ga2O3 has the corundum structure analogous to that of α-Al2O3. The bandgap energy of α-Ga2O3 is 5.3 eV and is greater than that of β-Ga2O3, making the α-phase attractive for devices that benefit from its wider bandgap. The O-H and O-D centers produced by the implantation of H+ and D+ into α-Ga2O3 have been studied by infrared spectroscopy and complementary theory. An O-H line at 3269 cm-1 is assigned to H complexed with a Ga vacancy (VGa), similar to the case of H trapped by an Al vacancy (VAl) in α-Al2O3. The isolated VGa and VAl defects in α-Ga2O3 and α-Al2O3 are found by theory to have a “shifted” vacancy-interstitial-vacancy equlibrium configuration, similar to VGa in β-Ga2O3 which also has shifted structures. However, the addition of H causes the complex with H trapped at an unshifted vacancy to have the lowest energy in both α-Ga2O3 and α-Al2O3.  more » « less
Award ID(s):
1901563
NSF-PAR ID:
10328645
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied physics letters
Volume:
120
ISSN:
1520-8842
Page Range / eLocation ID:
192101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. α-Ga2O3has the corundum structure analogous to that of α-Al2O3. The bandgap energy of α-Ga2O3is 5.3 eV and is greater than that of β-Ga2O3, making the α-phase attractive for devices that benefit from its wider bandgap. The O–H and O–D centers produced by the implantation of H+and D+into α-Ga2O3have been studied by infrared spectroscopy and complementary theory. An O–H line at 3269 cm−1is assigned to H complexed with a Ga vacancy (VGa), similar to the case of H trapped by an Al vacancy (VAl) in α-Al2O3. The isolated VGaand VAldefects in α-Ga2O3and α-Al2O3are found by theory to have a “shifted” vacancy-interstitial-vacancy equilibrium configuration, similar to VGain β-Ga2O3, which also has shifted structures. However, the addition of H causes the complex with H trapped at an unshifted vacancy to have the lowest energy in both α-Ga2O3and α-Al2O3.

     
    more » « less
  2. While a number of O-H and O-D vibrational lines have been observed for hydrogen and deuterium in β-Ga2O3, it has been commonly reported that there is no absorption with a component of the polarization E parallel to the [010], or b, axis. This experimental result has led to O-H defect structures that involve shifted configurations of a vacancy at the tetrahedrally coordinated Ga(1) site [VGa(1)] and have ruled out structures that involve a vacancy at the octahedrally coordinated Ga(2) site [VGa(2)], because these structures are predicted to show absorption for E//[010]. In this Letter, weak O-D lines at 2475 and 2493 cm−1 with a component of their polarization with E//[010] are reported for β-Ga2O3 that had been annealed in a D2 ambient. O-D defect structures involving an unshifted VGa(2) are proposed for these centers. An estimate is made that the concentration of VGa(2) in a Czochralski-grown sample is 2–3 orders of magnitude lower than that of VGa(1) from the intensities of the IR absorption lines.

     
    more » « less
  3. β-Ga2O3 has attracted much recent attention as a promising ultrawide bandgap semiconductor. Hydrogen can affect the conductivity of β-Ga2O3 through the introduction of shallow donors and the passivation of deep acceptors. The introduction of H or D into β-Ga2O3 by annealing in an H2 or D2 ambient at elevated temperature produces different classes of O–H or O–D centers. This work is a study of the interaction of D with VGa1 and VGa2 deep acceptors as well as other impurities and native defects in Ga2O3 by infrared spectroscopy and the complementary theory. (We focus primarily on the deuterium isotope of hydrogen because the vibrational modes of O–D centers can be detected with a higher signal-to-noise ratio than those of O–H.) O–D centers in β-Ga2O3 evolve upon annealing in an inert ambient and are transformed from one type of O–D center into another. These reactions affect the compensation of unintentional shallow donors by deep acceptors that are passivated by D. Defects involving additional impurities in β-Ga2O3 compete with VGa deep acceptors for D and modify the deuterium-related reactions that occur. The defect reactions that occur when D is introduced by annealing in a D2 ambient appear to be simpler than those observed for other introduction methods and provide a foundation for understanding the D-related reactions that can occur in more complicated situations. 
    more » « less
  4. The crystal structure of methyl α-D-mannopyranosyl-(1→3)-2- O -acetyl-β-D-mannopyranoside monohydrate, C 15 H 26 O 12 ·H 2 O, ( II ), has been determined and the structural parameters for its constituent α-D-mannopyranosyl residue compared with those for methyl α-D-mannopyranoside. Mono- O -acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α-D-mannopyranosyl-(1→3)-β-D-mannopyranoside despite repeated attempts. The conformational properties of the O -acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose-containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ∼0.02 Å upon O -acetylation. The phi (φ) and psi (ψ) torsion angles that dictate the conformation of the internal O -glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT , with a greater disparity found for ψ (Δ = ∼16°) than for φ (Δ = ∼6°). 
    more » « less
  5. Isopropyl 3-deoxy-α-D- ribo -hexopyranoside (isopropyl 3-deoxy-α-D-glucopyranoside), C 9 H 18 O 5 , (I), crystallizes from a methanol–ethyl acetate solvent mixture at room temperature in a 4 C 1 chair conformation that is slightly distorted towards the C5 S C1 twist-boat form. A comparison of the structural parameters in (I), methyl α-D-glucopyranoside, (II), α-D-glucopyranosyl-(1→4)-D-glucitol (maltitol), (III), and 3-deoxy-α-D- ribo -hexopyranose (3-deoxy-α-D-glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)–(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I) c –(IV) c . Exocyclic hydroxymethyl groups adopt the gauche – gauche ( gg ) conformation (H5 anti to O6) in (I) and (III), and the gauche – trans ( gt ) conformation (C4 anti to O6) in (II) and (IV). The O -glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing β-(1→4) linkages. 
    more » « less