skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing excitons in transition metal dichalcogenides by Drude-like exciton intraband absorption
Understanding excitonic dynamics in two-dimensional semiconducting transition metal dichalcogenides is important for developing their optoelectronic applications. Recently, transient absorption techniques based on resonant excitonic absorption have been used to study various aspects of excitonic dynamics in these materials. The transient absorption in such measurements originates from phase-space state filling, bandgap renormalization, or screening effects. Here we report a new method to probe excitonic dynamics based on exciton intraband absorption. In this Drude-like process, probe photons are absorbed by excitons in their intraband excitation to higher energy states, causing a transient absorption signal. Although the magnitude of the transient absorption is lower than that of the resonant techniques, the new method is less restrictive on the selection of probe wavelength, has a larger linear range, and can provide complementary information on photocarrier dynamics. Using the WS 2 monolayer and bulk samples as examples, we show that the new method can probe exciton–exciton annihilation at high densities and reveal exciton formation processes. We also found that the exciton intraband absorption cross section of the WS 2 monolayer is on the order of 10 −18 cm 2 .  more » « less
Award ID(s):
1505852
PAR ID:
10058204
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
ISSN:
2040-3364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Excitons in two-dimensional transition metal dichalcogenide monolayers (2D-TMDs) are of essential importance due to their key involvement in 2D-TMD-based applications. For instance, exciton dissociation and exciton radiative recombination are indispensible processes in photovoltaic and light-emitting devices, respectively. These two processes depend drastically on the photogeneration efficiency and lifetime of excitons. Here, we incorporate femtosecond pump–probe spectroscopy to investigate the ultrafast dynamics of exciton formation and decay in a single crystal of monolayer 2D tungsten disulfide (WS 2 ). Investigation of the formation dynamics of the lowest exciton (X A ) indicated that the formation time linearly increases from ∼150 fs upon resonant excitation, to ∼500 fs following excitation that is ∼1.1 eV above the band-gap. This dependence is attributed to the time it takes highly excited electrons in the conduction band (CB) to relax to the CB minimum (CBM) and contribute to the formation of X A . This is confirmed by infrared measurements of electron intraband relaxation dynamics. Furthermore, pump–probe experiments suggested that the X A ground state depletion recovery dynamics depend on the excitation energy as well. The average recovery time increased from ∼10 ps in the case of resonant excitation to ∼50 ps following excitation well above the band-gap. Having the ability to control whether generating short-lived or long-lived electron–hole pairs in 2D-TMD monolayers opens a new horizon for the application of these materials. For instance, long-lived electron–hole pairs are appropriate for photovoltaic devices, but short-lived excitons are more beneficial for lasers with ultrashort pulses. 
    more » « less
  2. Abstract The electronic and optical properties of 2D transition metal dichalcogenides are dominated by strong excitonic resonances. Exciton dynamics plays a critical role in the functionality and performance of many miniaturized 2D optoelectronic devices; however, the measurement of nanoscale excitonic behaviors remains challenging. Here, a near‐field transient nanoscopy is reported to probe exciton dynamics beyond the diffraction limit. Exciton recombination and exciton–exciton annihilation processes in monolayer and bilayer MoS2are studied as the proof‐of‐concept demonstration. Moreover, with the capability to access local sites, intriguing exciton dynamics near the monolayer‐bilayer interface and at the MoS2nano‐wrinkles are resolved. Such nanoscale resolution highlights the potential of this transient nanoscopy for fundamental investigation of exciton physics and further optimization of functional devices. 
    more » « less
  3. Abstract The homogeneous exciton linewidth, which captures the coherent quantum dynamics of an excitonic state, is a vital parameter in exploring light–matter interactions in 2D transition metal dichalcogenides (TMDs). An efficient control of the exciton linewidth is of great significance, and in particular of its intrinsic linewidth, which determines the minimum timescale for the coherent manipulation of excitons. However, such a control is rarely achieved in TMDs at room temperature (RT). While the intrinsic A exciton linewidth is down to 7 meV in monolayer WS2, the reported RT linewidth is typically a few tens of meV due to inevitable homogeneous and inhomogeneous broadening effects. Here, it is shown that a 7.18 meV near‐intrinsic linewidth can be observed at RT when monolayer WS2is coupled with a moderate‐refractive‐index hydrogenated silicon nanosphere in water. By boosting the dynamic competition between exciton and trion decay channels in WS2through the nanosphere‐supported Mie resonances, the coherent linewidth can be tuned from 35 down to 7.18 meV. Such modulation of exciton linewidth and its associated mechanism are robust even in presence of defects, easing the sample quality requirement and providing new opportunities for TMD‐based nanophotonics and optoelectronics. 
    more » « less
  4. Abstract Recent experiments observed significant energy transfer in type-II van der Waals (vdW) heterostructures, such as WS 2 /MoSe 2 , which is surprising due to their staggered band alignment and weak spectral overlap. In this work, we carry out first-principles calculations to shed light on energy and charge transfer in WS 2 /MoSe 2 heterostructure. Incorporating excitonic effect in nonadiabatic electronic dynamics, our first-principles calculations uncover a two-step process in competing energy and charge transfer, unravel their relative efficiencies and explore the means to control their competition. While both Dexter and Förster mechanisms can be responsible for energy transfer, they are shown to operate at different conditions. The excitonic effect is revealed to drive ultrafast energy and charge transfer in type-II WS 2 /MoSe 2 heterostructure. Our work provides a comprehensive picture of exciton dynamics in vdW heterostructures and paves the way for rational design of novel vdW heterostructures for optoelectronic and photovoltaic applications. 
    more » « less
  5. The newly developed van der Waals materials allow fabrication of multilayer heterostructures. Early efforts have mostly focused on heterostructures formed by similar materials. More recently, however, attempts have been made to expand the types of materials, such as topological insulators and organic semiconductors. Here we introduce an amorphous semiconductor to the material library for constructing van der Waals heterostructures. Samples composed of 2 nm amorphous black phosphorus synthesized by pulsed laser deposition and monolayer WS 2 obtained by mechanical exfoliation were fabricated by dry transfer. Photoluminescence measurements revealed that photocarriers excited in WS 2 of the heterostructure transfer to amorphous black phosphorus, in the form of either energy or charge transfer, on a time scale shorter than the exciton lifetime in WS 2 . Transient absorption measurements further indicate that holes can efficiently transfer from WS 2 to amorphous black phosphorus. However, interlayer electron transfer in either direction was found to be absent. The lack of electron transfer from amorphous black phosphorus to WS 2 is attributed to the localized electronic states in the amorphous semiconductor. Furthermore, we show that a hexagonal BN bilayer can effectively change the hole transfer process. 
    more » « less