skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tasks determine what is learned in visual statistical learning
Visual statistical learning (VSL), the unsupervised learning of statistical contingencies across time and space, may play a key role in efficient and predictive encoding of the perceptual world. How VSL capabilities vary as a function of ongoing task demands is still poorly understood. VSL is modulated by selective attention and faces interference from some secondary tasks, but there is little evidence that the types of contingencies learned in VSL are sensitive to task demands. We found a powerful effect of task on what is learned in VSL. Participants first completed a visual familiarization task requiring judgments of face gender (female/male) or scene location (interior/exterior). Statistical regularities were embedded between stimulus pairs. During a surprise recognition phase, participants showed less recognition for pairs that had required a change in response key (e.g., female followed by male) or task (e.g., female followed by indoor) during familiarization. When familiarization required detection of "flicker" or "jiggle" events unrelated to image content, there was weaker, but uniform, VSL across pair types. These results suggest that simple task manipulations play a strong role in modulating the distribution of learning over different pair combinations. Such variations may arise from task and response conflict or because the manner in which images are processed is altered.  more » « less
Award ID(s):
1632849 1632738
PAR ID:
10058245
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Psychonomic Bulletin & Review
ISSN:
1069-9384
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Behavior is often linked to gonadal sex; however, ecological or social environments can induce plasticity in sex-biased behaviors. In biparental species, pairs may divide offspring care into two parental roles, in which one parent specializes in territory defense and the other in nest care. The African cichlid fish Julidochromis marlieri displays plasticity in sex-biased behaviors. In Lake Tanganyika, J. marlieri form female-larger pairs in which the female is more aggressive than the male who performs more nest care, but under laboratory conditions, male-larger pairs can be formed in which these sex-biased behaviors are reversed. We investigated the influence of social environment on behavior by observing how individuals in both pair-types respond to conspecific intruders of either sex. We examined behavioral responses to three factors: sex of the subject, relative size of the subject, and the sex of the intruder. We confirm that relative size is a factor in behavior. The larger fish in the pair is more aggressive than the smaller fish is towards an intruder. While neither fish in the female-larger pairs varied their behaviors in response to the sex of the intruder, both members of the male-larger pairs were sensitive to intruder sex. Both individuals in the male-larger pairs engaged in more biting behaviors towards the intruder. Intruder biting behaviors strongly correlated with the biting behavior of the larger individual in the pair and occurred more frequently when encountering pairs with same sex as the larger fish when compared to pairs with the same sex as the smaller fish. Our results support the role of the social environment as a contributor in the expression of sex-biased behavior. 
    more » « less
  2. Real-world choice options have many features or attributes, whereas the reward outcome from those options only depends on a few features or attributes. It has been shown that humans learn and combine feature-based with more complex conjunction-based learning to tackle challenges of learning in naturalistic reward environments. However, it remains unclear how different learning strategies interact to determine what features or conjunctions should be attended to and control choice behavior, and how subsequent attentional modulations influence future learning and choice. To address these questions, we examined the behavior of male and female human participants during a three-dimensional learning task in which reward outcomes for different stimuli could be predicted based on a combination of an informative feature and conjunction. Using multiple approaches, we found that both choice behavior and reward probabilities estimated by participants were most accurately described by attention-modulated models that learned the predictive values of both the informative feature and the informative conjunction. Specifically, in the reinforcement learning model that best fit choice data, attention was controlled by the difference in the integrated feature and conjunction values. The resulting attention weights modulated learning by increasing the learning rate on attended features and conjunctions. Critically, modulating decision-making by attention weights did not improve the fit of data, providing little evidence for direct attentional effects on choice. These results suggest that in multidimensional environments, humans direct their attention not only to selectively process reward-predictive attributes but also to find parsimonious representations of the reward contingencies for more efficient learning. 
    more » « less
  3. null (Ed.)
    Category learning is fundamental to cognition, but little is known about how it proceeds in real-world environments when learners do not have instructions to search for category-relevant information, do not make overt category decisions, and do not experience direct feedback. Prior research demonstrates that listeners can acquire task-irrelevant auditory categories incidentally as they engage in primarily visuomotor tasks. The current study examines the factors that support this incidental category learning. Three experiments systematically manipulated the relationship of four novel auditory categories with a consistent visual feature (color or location) that informed a simple behavioral keypress response regarding the visual feature. In both an in-person experiment and two online replications with extensions, incidental auditory category learning occurred reliably when category exemplars consistently aligned with visuomotor demands of the primary task, but not when they were misaligned. The presence of an additional irrelevant visual feature that was uncorrelated with the primary task demands neither enhanced nor harmed incidental learning. By contrast, incidental learning did not occur when auditory categories were aligned consistently with one visual feature, but the motor response in the primary task was aligned with another, category-unaligned visual feature. Moreover, category learning did not reliably occur across passive observation or when participants made a category-nonspecific, generic motor response. These findings show that incidental learning of categories is strongly mediated by the character of coincident behavior. 
    more » « less
  4. Human learning and decision-making are supported by multiple systems operating in parallel. Recent studies isolating the contributions of reinforcement learning (RL) and working memory (WM) have revealed a trade-off between the two. An interactive WM/RL computational model predicts that although high WM load slows behavioral acquisition, it also induces larger prediction errors in the RL system that enhance robustness and retention of learned behaviors. Here, we tested this account by parametrically manipulating WM load during RL in conjunction with EEG in both male and female participants and administered two surprise memory tests. We further leveraged single-trial decoding of EEG signatures of RL and WM to determine whether their interaction predicted robust retention. Consistent with the model, behavioral learning was slower for associations acquired under higher load but showed parametrically improved future retention. This paradoxical result was mirrored by EEG indices of RL, which were strengthened under higher WM loads and predictive of more robust future behavioral retention of learned stimulus–response contingencies. We further tested whether stress alters the ability to shift between the two systems strategically to maximize immediate learning versus retention of information and found that induced stress had only a limited effect on this trade-off. The present results offer a deeper understanding of the cooperative interaction between WM and RL and show that relying on WM can benefit the rapid acquisition of choice behavior during learning but impairs retention. SIGNIFICANCE STATEMENT Successful learning is achieved by the joint contribution of the dopaminergic RL system and WM. The cooperative WM/RL model was productive in improving our understanding of the interplay between the two systems during learning, demonstrating that reliance on RL computations is modulated by WM load. However, the role of WM/RL systems in the retention of learned stimulus–response associations remained unestablished. Our results show that increased neural signatures of learning, indicative of greater RL computation, under high WM load also predicted better stimulus–response retention. This result supports a trade-off between the two systems, where degraded WM increases RL processing, which improves retention. Notably, we show that this cooperative interplay remains largely unaffected by acute stress. 
    more » « less
  5. Abstract Loud calls play an important function in regulating the use of space and structuring social groups and mating systems in a wide range of taxa. In pair‐living territorial animals, where encounters with neighbors and solitary conspecifics are common, these calls are mainly associated with resource defense or mate guarding behaviors. Owl monkeys (Aotus azarae) live in groups of one pair of reproducing adults and 1–4 younger, non‐reproducing individuals. Both sexes disperse when they are around 3 years of age; they become solitary floaters who compete to replace same‐sex adults from other groups. Here, we examined the behavioral responses of Azara's owl monkey pairs toward calls of unpaired and unfamiliar males and females to better understand if the competition between floaters and groups is in relationship to the defense of their territory, their mates, or both. We collected behavioral data from six groups, before, during, and after the playing back of unfamiliar male and female loud calls and of a control stimulus at the center and border of their home ranges. Overall, our results showed that the playback location did not elicit differential responses in the monkeys and that both sexes were more reactive to male than female unfamiliar calls, as evidenced by higher rates of sociosexual and vocal responses, movement toward the playback, and intergroup encounters during and after the experiments. Our study indicates that paired male and female owl monkeys mainly defend their partners toward intruders and emphasizes the need of including the role of sexual competition on both sexes in models about the evolution of pair‐living social organizations and sexual monogamy mating systems. 
    more » « less