skip to main content

Title: Hidden in plain sight: a massive, dusty starburst in a galaxy protocluster at z=5.7 in the COSMOS field
We report the serendipitous discovery of a dusty, starbursting galaxy at z=5.667 (called CRLE hereafter), in close physical association to the "normal" Main Sequence galaxy HZ10 at z=5.654. CRLE was identified by detection of [CII], [NII] and CO(2-1) line emission, making it the highest redshift, most luminous starburst in the COSMOS field. This massive, dusty galaxy appears to be forming stars at a rate of at least 1500$\,M_\odot$ yr$^{-1}$ in a compact region only ~3 kpc in diameter. The dynamical and dust emission properties of CRLE suggest an ongoing merger driving the starburst, in a potentially intermediate stage relative to other known dusty galaxies at the same epoch. The ratio of [CII] to [NII] may suggest that an important contribution to the [CII] emission comes from a diffuse ionized gas component, which could be more extended than the dense, starbursting gas. CRLE appears to be located in a significant galaxy overdensity at the same redshift, potentially associated with a large scale cosmic structure recently identified in a Lyman Alpha Emitter survey. This overdensity suggests that CRLE and HZ10 reside in a protocluster environment, offering the tantalizing opportunity to study the effect of a massive starburst on protocluster star formation. Our more » findings support the interpretation that a significant fraction of the earliest galaxy formation may occur from the inside-out, within the central regions of the most massive halos, while rapidly evolving into the massive galaxy clusters observed in the local Universe. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1614213
Publication Date:
NSF-PAR ID:
10058284
Journal Name:
The Astrophysical journal
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report CO(5 → 4) and CO(6 → 5) line observations in the dusty starbursting galaxy CRLE ( z = 5.667) and the main-sequence (MS) galaxy HZ10 ( z = 5.654) with the Northern Extended Millimeter Array. CRLE is the most luminous z > 5 starburst in the COSMOS field and HZ10 is the most gas-rich “normal” galaxy currently known at z > 5. We find line luminosities for CO(5 → 4) and CO(6 → 5) of (4.9 ± 0.5) and (3.8 ± 0.4) × 10 10 K km s −1 pc 2 for CRLE and upper limits ofmore »< 0.76 and < 0.60 × 10 10 K km s −1 pc 2 for HZ10, respectively. The CO excitation of CRLE appears comparable to other z > 5 dusty star-forming galaxies. For HZ10, these line luminosity limits provide the first significant constraints of this kind for an MS galaxy at z > 5. We find the upper limit of L 5 → 4 ′ / L 2 → 1 ′ in HZ10 could be similar to the average value for MS galaxies around z ≈ 1.5, suggesting that MS galaxies with comparable gas excitation may already have existed one billion years after the Big Bang. For CRLE we determine the most likely values for the H 2 density, kinetic temperature, and dust temperature based on excitation modeling of the CO line ladder. We also derive a total gas mass of (7.1 ± 1.3) × 10 10 M ⊙ . Our findings provide some of the currently most detailed constraints on the gas excitation that sets the conditions for star formation in a galaxy protocluster environment at z > 5.« less
  2. Abstract We report the detection of 23 OH + 1 → 0 absorption, emission, or P-Cygni-shaped lines and CO( J = 9→8) emission lines in 18 Herschel-selected z = 2–6 starburst galaxies with the Atacama Large Millimeter/submillimeter Array and the NOrthern Extended Millimeter Array, taken as part of the Gas And Dust Over cosmic Time Galaxy Survey. We find that the CO( J = 9→8) luminosity is higher than expected based on the far-infrared luminosity when compared to nearby star-forming galaxies. Together with the strength of the OH + emission components, this may suggest that shock excitation of warm, densemore »molecular gas is more prevalent in distant massive dusty starbursts than in nearby star-forming galaxies on average, perhaps due to an impact of galactic winds on the gas. OH + absorption is found to be ubiquitous in massive high-redshift starbursts, and is detected toward 89% of the sample. The majority of the sample shows evidence for outflows or inflows based on the velocity shifts of the OH + absorption/emission, with a comparable occurrence rate of both at the resolution of our observations. A small subsample appears to show outflow velocities in excess of their escape velocities. Thus, starburst-driven feedback appears to be important in the evolution of massive galaxies in their most active phases. We find a correlation between the OH + absorption optical depth and the dust temperature, which may suggest that warmer starbursts are more compact and have higher cosmic-ray energy densities, leading to more efficient OH + ion production. This is in agreement with a picture in which these high-redshift galaxies are “scaled-up” versions of the most intense nearby starbursts.« less
  3. We present ALMA observations of a merging system at z  ∼ 4.57, observed as a part of the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) survey. Combining ALMA [CII]158  μ m and far-infrared continuum data with multi-wavelength ancillary data, we find that the system is composed of two massive ( M ⋆  ≳ 10 10   M ⊙ ) star-forming galaxies experiencing a major merger (stellar mass ratio r mass  ≳ 0.9) at close spatial (∼13 kpc; projected) and velocity (Δ v  <  300 km s −1 ) separations, and two additional faint narrow [CII]-emitting satellites. The overall system belongs to amore »larger scale protocluster environment and is coincident to one of its overdensity peaks. Additionally, ALMA reveals the presence of [CII] emission arising from a circumgalactic gas structure, extending up to a diameter-scale of ∼30 kpc. Our morpho-spectral decomposition analysis shows that about 50% of the total flux resides between the individual galaxy components, in a metal-enriched gaseous envelope characterised by a disturbed morphology and complex kinematics. Similarly to observations of shock-excited [CII] emitted from tidal tails in local groups, our results can be interpreted as a possible signature of interstellar gas stripped by strong gravitational interactions, with a possible contribution from material ejected by galactic outflows and emission triggered by star formation in small faint satellites. Our findings suggest that mergers could be an efficient mechanism of gas mixing in the circumgalactic medium around high- z galaxies, and thus play a key role in the galaxy baryon cycle at early epochs.« less
  4. Utilizing spectroscopic observations taken for the VIMOS Ultra-Deep Survey (VUDS), new observations from Keck/DEIMOS, and publicly available observations of large samples of star-forming galaxies, we report here on the relationship between the star-formation rate (SFR) and the local environment ( δ gal ) of galaxies in the early universe (2 <  z  < 5). Unlike what is observed at lower redshifts ( z  ≲ 2), we observe a definite, nearly monotonic increase in the average SFR with increasing galaxy overdensity over more than an order of magnitude in δ gal . The robustness of this trend is quantified by accounting for both uncertaintiesmore »in our measurements and galaxy populations that are either underrepresented or not present in our sample (e.g., extremely dusty star-forming and quiescent galaxies), and we find that the trend remains significant under all circumstances. This trend appears to be primarily driven by the fractional increase of galaxies in high-density environments that are more massive in their stellar content and are forming stars at a higher rate than their less massive counterparts. We find that, even after stellar mass effects are accounted for, there remains a weak but significant SFR– δ gal trend in our sample implying that additional environmentally related processes are helping to drive this trend. We also find clear evidence that the average SFR of galaxies in the densest environments increases with increasing redshift. These results lend themselves to a picture in which massive gas-rich galaxies coalesce into proto-cluster environments at z  ≳ 3, interact with other galaxies or with a forming large-scale medium, subsequently using or losing most of their gas in the process, and begin to seed the nascent red sequence that is present in clusters at slightly lower redshifts.« less
  5. ABSTRACT We measure the 850-μm source densities of 46 candidate protoclusters selected from the Planck high-z catalogue (PHz) and the Planck Catalogue of Compact Sources (PCCS) that were followed up with Herschel-SPIRE and SCUBA-2. This paper aims to search for overdensities of 850-μm sources in order to select the fields that are most likely to be genuine protoclusters. Of the 46 candidate protoclusters, 25 have significant overdensities (>5 times the field counts), 11 have intermediate overdensities (3–5 times the field counts), and 10 have no overdensity (<3 times the field counts) of 850-μm sources. We find that the enhanced number densities are unlikelymore »to be the result of sample variance. Compared with the number counts of another sample selected from Planck’s compact source catalogues, this [PHz + PCCS]-selected sample has a higher fraction of candidate protoclusters with significant overdensities, though both samples show overdensities of 850-μm sources above intermediate level. Based on the estimated star formation rate densities (SFRDs), we suggest that both samples can efficiently select protoclusters with starbursting galaxies near the redshift at which the global field SFRD peaks (2 < z < 3). Based on the confirmation of overdensities found here, future follow-up observations on other PHz targets may greatly increase the number of genuine dusty star-forming galaxy-rich clusters/protoclusters.« less