skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectroscopic and Reactivity Comparisons of a Pair of bTAML Complexes with Fe V ═O and Fe IV ═O Units
Award ID(s):
1665391
PAR ID:
10058349
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
56
Issue:
11
ISSN:
0020-1669
Page Range / eLocation ID:
6352 to 6361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract When white dwarfs freeze, the plasma mixtures inside them undergo separation processes that can produce radical changes in the composition profile of the star. The abundance of neutron-rich elements, such as22Ne or56Fe, determines whether or not the first crystals are more or less dense than the surrounding fluid and thus whether they sink or float. These processes have now been studied for C–O–Ne and C–O–Fe mixtures, finding that distillation and precipitation processes are possible in white dwarfs. In this work, we calculate the phase diagram of more complicated O–Ne–Fe mixtures and make predictions for the internal structure of the separated white dwarf. There are two possible outcomes determined by a complicated interplay between the Ne abundance, the22Ne fraction, and the56Fe abundance. Either Fe distills to form an inner core because the first O–Ne solids are buoyant, or an O–Ne inner core forms and Fe accumulates in the liquid until Fe distillation begins and forms an Fe shell. In the case of an Fe shell, a Rayleigh–Taylor instability may arise and overturn the core. In either case, Fe distillation may only produce a cooling delay of order 0.1 Gyr, as these processes occur early at high white dwarf luminosities. Fe inner cores and shells may be detectable through asteroseismology and could enhance the yield of neutron-rich elements such as55Mn and58Ni in supernovae. 
    more » « less
  2. null (Ed.)