skip to main content


Title: Experimental demonstration of loop state-preparation-and-measurement tomography
We have demonstrated, using qubits encoded in the polarization of heralded individual photons, that loop state-preparation-and-measurement tomography is capable of detecting correlated errors between the preparation and the measurement of a quantum system.  more » « less
Award ID(s):
1719390
NSF-PAR ID:
10058702
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Optics 2017
Page Range / eLocation ID:
FM2D.2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many teacher education researchers have expressed concerns about the lack of rigorous impact evaluations of teacher preparation practices. I summarize these various concerns as they relate to issues of internal validity, measurement, and external validity. I then assess the prevalence of these issues by reviewing 166 impact evaluations of teacher preparation practices published in peer-reviewed journals between 2002–2019. Although I find that very few studies address issues of internal validity, measurement, and external validity, I highlight some innovative approaches and present a checklist of considerations to assist future researchers in designing more rigorous impact evaluations.

     
    more » « less
  2. Quantum many-body scar states are highly excited eigenstates of many-body systems that exhibit atypical entanglement and correlation properties relative to typical eigenstates at the same energy density. Scar states also give rise to infinitely long-lived coherent dynamics when the system is prepared in a special initial state having finite overlap with them. Many models with exact scar states have been constructed, but the fate of scarred eigenstates and dynamics when these models are perturbed is difficult to study with classical computational techniques. In this work, we propose state preparation protocols that enable the use of quantum computers to study this question. We present protocols both for individual scar states in a particular model, as well as superpositions of them that give rise to coherent dynamics. For superpositions of scar states, we present both a system-size-linear depth unitary and a finite-depth nonunitary state preparation protocol, the latter of which uses measurement and postselection to reduce the circuit depth. For individual scarred eigenstates, we formulate an exact state preparation approach based on matrix product states that yields quasipolynomial-depth circuits, as well as a variational approach with a polynomial-depth ansatz circuit. We also provide proof of principle state-preparation demonstrations on superconducting quantum hardware. 
    more » « less
  3. The residual fiber length in a molded part is one of the most important microstructural properties of discontinuous fiber‐reinforced composites. While there have been several research studies characterizing the process‐induced fiber length reduction, the measurement procedures vary substantially, calling into question the comparability of reported results. This article introduces a newly developed measurement procedure that aims to provide accurate, repeatable, robust, and time efficient fiber length analyses. A comprehensive study of measurement techniques was performed comparing commercially available systems and the conventional approach of measuring the fiber length manually. The results emphasize the need for a standardized procedure to characterize the fiber length distribution and the risk of generating inadequate results through improper sample preparation. The developed measurement technique was tested and compared for an experimental study of fiber breakage in injection molding. For a simple plaque geometry, the residual fiber length along the flow path was obtained for a long glass fiber‐reinforced polypropylene at 30 and 40%wt for varying process conditions. The new measurement technique showed accurate and repeatable results. The results of the injection molding study showed that screw speed and back pressure are important factors that drive fiber breakage. An increase in back pressure from 13 to 50 bar and screw speed from 27 to 35 rpm reduces the weight‐average fiber length by 37.5%. 
    more » « less
  4. Motivated by estimation of quantum noise models, we study the problem of learning a Pauli channel, or more generally the Pauli error rates of an arbitrary channel. By employing a novel reduction to the "Population Recovery" problem, we give an extremely simple algorithm that learns the Pauli error rates of an n -qubit channel to precision ϵ in ℓ ∞ using just O ( 1 / ϵ 2 ) log ⁡ ( n / ϵ ) applications of the channel. This is optimal up to the logarithmic factors. Our algorithm uses only unentangled state preparation and measurements, and the post-measurement classical runtime is just an O ( 1 / ϵ ) factor larger than the measurement data size. It is also impervious to a limited model of measurement noise where heralded measurement failures occur independently with probability ≤ 1 / 4 .We then consider the case where the noise channel is close to the identity, meaning that the no-error outcome occurs with probability 1 − η . In the regime of small η we extend our algorithm to achieve multiplicative precision 1 ± ϵ (i.e., additive precision ϵ η ) using just O ( 1 ϵ 2 η ) log ⁡ ( n / ϵ ) applications of the channel. 
    more » « less
  5. ABSTRACT The DMASS sample is a photometric sample from the DES Year 1 data set designed to replicate the properties of the CMASS sample from BOSS, in support of a joint analysis of DES and BOSS beyond the small overlapping area. In this paper, we present the measurement of galaxy–galaxy lensing using the DMASS sample as gravitational lenses in the DES Y1 imaging data. We test a number of potential systematics that can bias the galaxy–galaxy lensing signal, including those from shear estimation, photometric redshifts, and observing conditions. After careful systematic tests, we obtain a highly significant detection of the galaxy–galaxy lensing signal, with total S/N = 25.7. With the measured signal, we assess the feasibility of using DMASS as gravitational lenses equivalent to CMASS, by estimating the galaxy-matter cross-correlation coefficient rcc. By jointly fitting the galaxy–galaxy lensing measurement with the galaxy clustering measurement from CMASS, we obtain $r_{\rm cc}=1.09^{+0.12}_{-0.11}$ for the scale cut of $4 \, h^{-1}{\rm \,\,Mpc}$ and $r_{\rm cc}=1.06^{+0.13}_{-0.12}$ for $12 \, h^{-1}{\rm \,\,Mpc}$ in fixed cosmology. By adding the angular galaxy clustering of DMASS, we obtain rcc = 1.06 ± 0.10 for the scale cut of $4 \, h^{-1}{\rm \,\,Mpc}$ and rcc = 1.03 ± 0.11 for $12 \, h^{-1}{\rm \,\,Mpc}$. The resulting values of rcc indicate that the lensing signal of DMASS is statistically consistent with the one that would have been measured if CMASS had populated the DES region within the given statistical uncertainty. The measurement of galaxy–galaxy lensing presented in this paper will serve as part of the data vector for the forthcoming cosmology analysis in preparation. 
    more » « less