skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards formal definitions of blameworthiness, intention, and moral responsibility
We provide formal definitions of \emph{degree of blameworthiness} and \emph{intention} relative to an \emph{epistemic state} (a probability over causal models and a utility function on outcomes). These, together with a definition of actual causality, provide the key ingredients for moral responsibility judgments. We show that these definitions give insight into commonsense intuitions in a variety of puzzling cases from the literature.  more » « less
Award ID(s):
1718108 1703846
PAR ID:
10058738
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We address the question of repeatedly learning linear classifiers against agents who are \emph{strategically} trying to \emph{game} the deployed classifiers, and we use the \emph{Stackelberg regret} to measure the performance of our algorithms. First, we show that Stackelberg and external regret for the problem of strategic classification are \emph{strongly incompatible}: i.e., there exist worst-case scenarios, where \emph{any} sequence of actions providing \emph{sublinear} external regret might result in \emph{linear} Stackelberg regret and vice versa. Second, we present a strategy-aware algorithm for minimizing the Stackelberg regret for which we prove nearly matching upper and lower regret bounds. Finally, we provide simulations to complement our theoretical analysis. Our results advance the growing literature of learning from revealed preferences, which has so far focused on smoother'' assumptions from the perspective of the learner and the agents respectively. 
    more » « less
  2. This work studies the statistical limits of uniform convergence for offline policy evaluation (OPE) problems with model-based methods (for episodic MDP) and provides a unified framework towards optimal learning for several well-motivated offline tasks. Uniform OPE supΠ|Qπ−Q̂ π|<ϵ is a stronger measure than the point-wise OPE and ensures offline learning when Π contains all policies (the global class). In this paper, we establish an Ω(H2S/dmϵ2) lower bound (over model-based family) for the global uniform OPE and our main result establishes an upper bound of Õ (H2/dmϵ2) for the \emph{local} uniform convergence that applies to all \emph{near-empirically optimal} policies for the MDPs with \emph{stationary} transition. Here dm is the minimal marginal state-action probability. Critically, the highlight in achieving the optimal rate Õ (H2/dmϵ2) is our design of \emph{singleton absorbing MDP}, which is a new sharp analysis tool that works with the model-based approach. We generalize such a model-based framework to the new settings: offline task-agnostic and the offline reward-free with optimal complexity Õ (H2log(K)/dmϵ2) (K is the number of tasks) and Õ (H2S/dmϵ2) respectively. These results provide a unified solution for simultaneously solving different offline RL problems. 
    more » « less
  3. Group fairness definitions such as Demographic Parity and Equal Opportunity make assumptions about the underlying decision-problem that restrict them to classification problems. Prior work has translated these definitions to other machine learning environments, such as unsupervised learning and reinforcement learning, by implementing their closest mathematical equivalent. As a result, there are numerous bespoke interpretations of these definitions. This work aims to unify the shared aspects of each of these bespoke definitions, and to this end we provide a group fairness framework that generalizes beyond just classification problems. We leverage two fairness principles that enable this generalization. First, our framework measures outcomes in terms of utilities, rather than predictions, and does so for both the decision-maker and the individual. Second, our framework can consider counterfactual outcomes, rather than just observed outcomes, thus preventing loopholes where fairness criteria are satisfied through self-fulfilling prophecies. We provide concrete examples of how our utility fairness framework avoids these assumptions and thus naturally integrates with classification, clustering, and reinforcement learning fairness problems. We also show that many of the bespoke interpretations of Demographic Parity and Equal Opportunity fit nicely as special cases of our framework. 
    more » « less
  4. Despite the wide empirical success of modern machine learning algorithms and models in a multitude of applications, they are known to be highly susceptible to seemingly small indiscernible perturbations to the input data known as \emph{adversarial attacks}. A variety of recent adversarial training procedures have been proposed to remedy this issue. Despite the success of such procedures at increasing accuracy on adversarially perturbed inputs or \emph{robust accuracy}, these techniques often reduce accuracy on natural unperturbed inputs or \emph{standard accuracy}. Complicating matters further, the effect and trend of adversarial training procedures on standard and robust accuracy is rather counter intuitive and radically dependent on a variety of factors including the perceived form of the perturbation during training, size/quality of data, model overparameterization, etc. In this paper we focus on binary classification problems where the data is generated according to the mixture of two Gaussians with general anisotropic covariance matrices and derive a precise characterization of the standard and robust accuracy for a class of minimax adversarially trained models. We consider a general norm-based adversarial model, where the adversary can add perturbations of bounded ellp norm to each input data, for an arbitrary p greater than one. Our comprehensive analysis allows us to theoretically explain several intriguing empirical phenomena and provide a precise understanding of the role of different problem parameters on standard and robust accuracies. 
    more » « less
  5. Woodruff, David P. (Ed.)
    Matroids are a fundamental object of study in combinatorial optimization. Three closely related and important problems involving matroids are maximizing the size of the union of $$k$$ independent sets (that is, \emph{$$k$$-fold matroid union}), computing $$k$$ disjoint bases (a.k.a.\ \emph{matroid base packing}), and covering the elements by $$k$$ bases (a.k.a.\ \emph{matroid base covering}). These problems generalize naturally to integral and real-valued capacities on the elements. This work develops faster exact and/or approximation problems for these and some other closely related problems such as optimal reinforcement and matroid membership. We obtain improved running times both for general matroids in the independence oracle model and for the graphic matroid. The main thrust of our improvements comes from developing a faster and unifying \emph{push-relabel} algorithm for the integer-capacitated versions of these problems, building on previous work by [FM12]. We then build on this algorithm in two directions. First we develop a faster augmenting path subroutine for $$k$$-fold matroid union that, when appended to an approximation version of the push-relabel algorithm, gives a faster exact algorithm for some parameters of $$k$$. In particular we obtain a subquadratic-query running time in the uncapacitated setting for the three basic problems listed above. We also obtain faster approximation algorithms for these problems with real-valued capacities by reducing to small integral capacities via randomized rounding. To this end, we develop a new randomized rounding technique for base covering problems in matroids that may also be of independent interest. 
    more » « less