skip to main content

Title: American Indian Storytelling with Alice
Research suggests that introducing students to computational concepts at a young age improves the likelihood that they will become interested in computer science later on in life (Super, 1953). As such, it is becoming increasingly important to develop lessons for K-12 students that include computational thinking (Barr, 2011). The storytelling project at Montana State University integrates computational thinking skills into the Indian Education for All (IEFA) curriculum for middle school students in Montana. 1. Identify an object not in Alice and needed for a lesson. 2. Develop rough draft and provide to the model developer. 3. Develop model in 3Ds max. 4. Add model to world, and add methods as needed. References Plateau Indian Beaded Bags 5. Gather feedback from students and instructors. Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the role of the computer science education community? Acm Inroads, 2(1), 48-54. Cooper, J. (n.d.). Plateau beaded bag, ca. 1930 [Photograph found in Fred Mitchell, Montana Historical Society, Helena]. Retrieved from http://mhs.mt.gov/ Portals/11/education/ABeautifulTradition/tradition%20design%20color% 20brochure.pdf Super, D. E. (1953). A theory of vocational development. American Psychologist, 8(5), 185-190. We work to develop lesson plans, plan outreach events, and find relevant literature to satisfy the content standard requirements as well as more » the essential understandings associated with IEFA. Furthermore, we strive to integrate basic computer science concepts into these lessons to help pique student interest in programming and computational thinking. This is done using the Alice software, a drag-and-drop programming environment that allows students to use computational thinking in a beginner-friendly interface to create animations. « less
Authors:
; ; ; ;
Award ID(s):
1657553
Publication Date:
NSF-PAR ID:
10058786
Journal Name:
SIGCSE Poster Session
Sponsoring Org:
National Science Foundation
More Like this
  1. As schools and districts across the United States adopt computer science standards and curriculum for K-12 computer science education, they look to integrate the foundational concepts of computational thinking (CT) into existing core subjects of elementary-age students. Research has shown the effectiveness of teaching CT elements (abstraction, generalization, decomposition, algorithmic thinking, debugging) using non-programming, unplugged approaches. These approaches address common barriers teachers face with lack of knowledge, familiarity, or technology tools. Picture books and graphic novels present an unexplored non-programming, unplugged resource for teachers to integrate computational thinking into their CT or CT-integrated lessons. This analysis examines 27 picture books and graphic novels published between 2015 and 2020 targeted to K-6 students for representation of computational thinking elements. Using the computational thinking curriculum framework for K-6, we identify the grade-level competencies of the CT elements featured in the books compared to the books’ target age groups. We compare grade-level competencies to interest level to identify each CT element representation as “foundational,” “on-target,” or “advanced.” We conclude that literature offers teachers a non-programming unplugged resource to expose students to CT and enhance CT and CT-integrated lessons, while also personalizing learning based on CT readiness and interest level.
  2. Exposure to science, technology, engineering, and mathematics (STEM) at a young age is key to inspiring students to pursue careers in these fields. Thus, many institutions of higher education offer events to engage youth in STEM activities. These events are most effective when they are adapted to the specific audience. In Montana, a large percentage of the K-12 student population is from rural communities, where the ability to participate in such events is limited due to travel logistics and a shortage of relatable materials. We have developed a computer science outreach module that targets these populations through the use of storytelling and the Alice programming environment, thus drawing a parallel between storytelling and building algorithms. We describe the module's implementation, report and analyze feedback, and provide lessons learned from the module's implementation at outreach events.
  3. Visual block-based programming environments (VBBPEs) such as Scratch and Alice are increasingly being used in introductory computer science lessons across elementary school grades. These environments, and the curricula that accompany them, are designed to be developmentally-appropriate and engaging for younger learners but may introduce challenges for future computer science educators. Using the final projects of 4th, 5th, and 6th grade students who completed an introductory curriculum using a VBBPE, this paper focuses on patterns that show success within the context of VBBPEs but could pose potential challenges for teachers of follow-up computer science instruction. This paper focuses on three specific strategies observed in learners' projects: (1) wait blocks being used to manage program execution, (2) the use of event-based programming strategies to produce parallel outcomes, and (3) the coupling of taught concepts to curricular presentation. For each of these outcomes, we present data on how the course materials supported them, what learners achieved while enacting them, and the implications the strategy poses for future educators. We then discuss possible design and pedagogical responses. The contribution of this work is that it identifies early computer science learning strategies, contextualizes them within developmentally-appropriate environments, and discusses their implications with respect to futuremore »pedagogy. This paper advances our understanding of the role of VBBPEs in introductory computing and their place within the larger K-12 computer science trajectory.« less
  4. With the increased demand for introducing computational thinking (CT) in K-12 classrooms, educational researchers are developing integrated lesson plans that can teach CT fundamentals in non- computing specific classrooms. Although these lessons reach more students through the core curriculum, proper evaluation methods are needed to ensure the quality of the design and integration. As part of a research practice partnership, we work to infuse research- backed curricula into science courses. We find a three-pronged approach of evaluation can help us make better decisions on how to improve experimental curricula for active classrooms. This CEO model uses three data sources (student code traces, exit ticket responses, and field observations) as a triangulated approach that can be used to identify programming behavior among novice developers, preferred task ordering for the assignment, and scaffolding recommendations to teachers. This approach allows us to evaluate the practical implementations of our initiative and create a focused approach for designing more effective lessons.
  5. This full research-track paper demonstrates growth in computational thinking in a cohort of engineering students completing their first course in engineering at a large Southwestern university in the United States. Computational thinking has been acknowledged as a key aspect of engineering education and an intrinsic part of multiple ABET outcomes. However, computing is an area where some students have more privileges (e.g. access and exposure to meaningful use of computers) than others. Integrating computing into engineering, especially early in the curriculum, may exacerbate existing experiential disadvantages students from excluded social identities experience. Most introductory engineering programs have a component of programming and/or computational thinking. A comprehensive literature review showed that no existing computational thinking framework fully met the needs of students and professors in engineering and computer science. As a result, this team created the Engineering Computational Thinking Diagnostic (ECTD). This diagnostic was assessed and improved during the 2019-2020 academic year. Data was collected from a cohort in a first-year engineering course that included topics in mathematics, engineering problem solving, and computation. Pre- and post-test data analysis with 62 participants documents statistically significant student growth in computational thinking in this course. Significant differences were not found by gender or amore »limited racially-based analysis. This diagnostic is of interest and relevance to all institutions providing engineering and computing programs. The short-term impact of this research includes an innovative approach to gauge student abilities in computational thinking early in a course in order to add appropriate intervention activities into lesson plans. The long-term impact is the creation of a measurement of student learning of computational thinking in engineering for courses and programs that wish to develop this important skill in their students.« less