skip to main content


Title: Roles of conserved tryptophans in trimerization of HIV‐1 membrane‐proximal external regions: Implications for virucidal design via alchemical free‐energy molecular simulations
Abstract

The Dual‐Action Virolytic Entry Inhibitors, or “DAVEI's,” are a class of recombinant fusions of a lectin, a linker polypeptide, and a 15‐residue fragment from the membrane‐proximal external region (MPER) of HIV‐1 gp41. DAVEI's trigger rupture of HIV‐1 virions, and the interaction site between DAVEI MPER and HIV‐1 lies in the gp41 component of the envelope glycoprotein Env. Here, we explore the hypothesis that DAVEI MPER engages Env gp41 in a mode structurally similar to a crystallographic MPER trimer. We used alchemical free‐energy perturbation to assess the thermodynamic roles of each of the four conserved tryptophan residues on each protomer of MPER3. We found that a W666A mutation had a large positivefor all three protomers, while W672A had a large positivefor only two of the three protomers, with the other tryptophans remaining unimportant contributors to MPER3stability. The protomer for which W672 is not important is unique in the placement of its W666 sidechain between the other two protomers. We show that the unique orientation of this W666 sidechain azimuthally rotates its protomer away from the orientation it would have if the trimer were symmetric, resulting in the diminished interaction of this W672 with the rest of MPER3. Our findings are consistent with our previous experimental study of W‐to‐A mutants of DAVEI. This suggests that DAVEI MPER may engage HIV‐1 Env to form a mixed trimer state in which one DAVEI MPER forms a trimer by displacing a more weakly interacting protomer of the endogenous Env MPER trimer.

 
more » « less
NSF-PAR ID:
10058922
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Proteins: Structure, Function, and Bioinformatics
Volume:
86
Issue:
7
ISSN:
0887-3585
Page Range / eLocation ID:
p. 707-711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Following sea‐ice retreat, surface waters of Arctic marginal seas become nutrient‐limited and subsurface chlorophyll maxima (SCM) develop below the pycnocline where nutrients and light conditions are favorable. However, the importance of these “hidden” features for regional productivity is not well constrained. Here, we use a unique combination of high‐resolution biogeochemical and physical observations collected on the Chukchi shelf in 2017 to constrain the fine‐scale structure of nutrients, O2, particles, SCM, and turbulence. We find large O2excess at middepth, identified by positive saturation () maxima of 15%–20% that unambiguously indicate significant production occurring in middepth waters. Themaxima coincided with a complete depletion of dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+). Nitracline depths aligned with SCM depths and the lowest extent ofmaxima, suggesting this horizon represents a compensation point for balanced growth and loss. Furthermore, SCM were also associated with turbulence minima and sat just above a high turbidity bottom layer where light attenuation increased significantly. Spatially, the largestmaxima were associated with high nutrient winter‐origin water masses (14.8% ± 2.4%), under a shallower pycnocline associated with seasonal melt while lower values were associated with summer‐origin water masses (7.4% ± 3.9%). Integrated O2excesses of 800–1,200 mmol m−2in regions overlying winter water are consistent with primary production rates that are 12%–40% of previously reported regional primary production. These data implicate short‐term and long‐term control of SCM and associated productivity by stratification, turbulence, light, and seasonal water mass formation, with corresponding potential for climate‐related sensitivities.

     
    more » « less
  2. Key points

    The beneficial effects of sustained or lifelong (>25 years) endurance exercise on cardiovascular structure and exercise function have been largely established in men.

    The current findings indicate that committed (≥4 weekly exercise sessions) lifelong exercise results in substantial benefits in exercise capacity (), cardiovascular function at submaximal and maximal exercise, left ventricular mass and compliance, and blood volume compared to similarly aged or even younger (middle‐age) untrained women.

    Endurance exercise training should be considered a key strategy to prevent cardiovascular disease with ageing in women as well as men.

    Abstract

    This study was a retrospective, cross‐sectional analysis of exercise performance and left ventricular (LV) morphology in 70 women to examine whether women who have performed regular, lifelong endurance exercise acquire the same beneficial adaptations in cardiovascular structure and function and exercise performance that have been reported previously in men. Three groups of women were examined: (1) 35 older (>60 years) untrained women (older untrained, OU), (2) 13 older women who had consistently performed four or more endurance exercise sessions weekly for at least 25 years (older trained, OT), and (3) 22 middle‐aged (range 35–59 years) untrained women (middle‐aged untrained, MU) as a reference control for the appropriate age‐related changes. Oxygen uptake () and cardiovascular function (cardiac output (); stroke volume (SV) acetylene rebreathing) were examined at rest, steady‐state submaximal exercise and maximal exercise (maximal oxygen uptake,). Blood volume (CO rebreathing) and LV mass (cardiac magnetic resonance imaging), plus invasive measures of static and dynamic chamber compliance were also examined.(p < 0.001) and maximal exerciseand SV were larger in older trained women compared to the two untrained groups (∼17% and ∼27% forand SV, respectively,versusMU; ∼40% and ∼38%versusOU, allp < 0.001). Blood volume (mL kg−1) and LV mass index (g m−2) were larger in OTversusOU (∼11% and ∼16%, respectively, bothP ≤ 0.015) Static LV chamber compliance was greater in OT compared to both untrained groups (median (25–75%): MU: 0.065 (0.049–0.080); OU: 0.085 (0.061–0.138); OT: 0.047 (0.031–0.054),P ≤ 0.053). Collectively, these findings indicate that lifetime endurance exercise appears to be extremely effective at preserving or even enhancing cardiovascular structure and function with advanced age in women.

     
    more » « less
  3. Abstract

    We report the pulsed‐laser deposition of epitaxial double‐perovskite Bi2FeCrO6(BFCO) films on the (001)‐, (110), and (111)‐oriented single‐crystal SrTiO3substrates. All of the BFCO films with various orientations show theandsuperlattice‐diffraction peaks. The intensity ratios between the‐superlattice and the main 111‐diffraction peak can be tailored by simply adjusting the laser repetition rate and substrate temperature, reaching up to 4.4%. However, both optical absorption spectra and magnetic measurements evidence that the strong superlattice peaks are not correlated with theB‐site Fe3+/Cr3+cation ordering. Instead, the epitaxial (111)‐oriented Bi2FeCrO6films show an enhanced remanent polarization of 92 μC/cm2at 10 K, much larger than the predicted values by density‐functional theory calculations. Positive‐up‐negative‐down (PUND) measurements with a time interval of 10 μs further support these observations. Therefore, our experimental results reveal that the strong superlattice peaks may come fromA‐ orB‐site cation shifts along the pseudo‐cubic [111] direction, which further enhance the ferroelectric polarization of the BFCO thin films.

     
    more » « less
  4. Abstract

    The mineral apatite, Ca5(PO4)3(F,Cl,OH), is a ubiquitous accessory mineral, with its volatile content and isotopic compositions used to interpret the evolution of H2O on planetary bodies. During hypervelocity impact, extreme pressures shock target rocks resulting in deformation of minerals; however, relatively few microstructural studies of apatite have been undertaken. Given its widespread distribution in the solar system, it is important to understand how apatite responds to progressive shock metamorphism. Here, we present detailed microstructural analyses of shock deformation in ~560 apatite grains throughout ~550 m of shocked granitoid rock from the peak ring of the Chicxulub impact structure, Mexico. A combination of high‐resolution backscattered electron (BSE) imaging, electron backscatter diffraction mapping, transmission Kikuchi diffraction mapping, and transmission electron microscopy is used to characterize deformation within apatite grains. Systematic, crystallographically controlled deformation bands are present within apatite, consistent with tilt boundaries that contain the <c> (axis) and result from slip in <> (direction) on(plane) during shock deformation. Deformation bands contain complex subgrain domains, isolated dislocations, and low‐angle boundaries of ~1° to 2°. Planar fractures within apatite form conjugate sets that are oriented within either {, {, {, or. Complementary electron microprobe analyses (EPMA) of a subset of recrystallized and partially recrystallized apatite grains show that there is an apparent change in MgO content in shock‐recrystallized apatite compositions. This study shows that the response of apatite to shock deformation can be highly variable, and that application of a combined microstructural and chemical analysis workflow can reveal complex deformation histories in apatite grains, some of which result in changes to crystal structure and composition, which are important for understanding the genesis of apatite in both terrestrial and extraterrestrial environments.

     
    more » « less
  5. Summary

    Chemotrophic microorganisms gain energy for cellular functions by catalyzing oxidation–reduction (redox) reactions that are out of equilibrium. Calculations of the Gibbs energy (ΔGr) can identify whether a reaction is thermodynamically favourable and quantify the accompanying energy yield at the temperature, pressure and chemical composition in the system of interest. Based on carefully calculated values ofΔGr, we predict a novel microbial metabolism – sulfur comproportionation (3H2S ++ 2H+4S0+ 4H2O). We show that at elevated concentrations of sulfide and sulfate in acidic environments over a broad temperature range, this putative metabolism can be exergonic (ΔGr<0), yielding ~30–50 kJ mol−1. We suggest that this may be sufficient energy to support a chemolithotrophic metabolism currently missing from the literature. Other versions of this metabolism, comproportionation to thiosulfate (H2S ++ H2O) and to sulfite (H2S + 34+ 2H+), are only moderately exergonic or endergonic even at ideal geochemical conditions. Natural and impacted environments, including sulfidic karst systems, shallow‐sea hydrothermal vents, sites of acid mine drainage, and acid–sulfate crater lakes, may be ideal hunting grounds for finding microbial sulfur comproportionators.

     
    more » « less