skip to main content


Title: High‐resolution microstructural and compositional analyses of shock deformed apatite from the peak ring of the Chicxulub impact crater
Abstract

The mineral apatite, Ca5(PO4)3(F,Cl,OH), is a ubiquitous accessory mineral, with its volatile content and isotopic compositions used to interpret the evolution of H2O on planetary bodies. During hypervelocity impact, extreme pressures shock target rocks resulting in deformation of minerals; however, relatively few microstructural studies of apatite have been undertaken. Given its widespread distribution in the solar system, it is important to understand how apatite responds to progressive shock metamorphism. Here, we present detailed microstructural analyses of shock deformation in ~560 apatite grains throughout ~550 m of shocked granitoid rock from the peak ring of the Chicxulub impact structure, Mexico. A combination of high‐resolution backscattered electron (BSE) imaging, electron backscatter diffraction mapping, transmission Kikuchi diffraction mapping, and transmission electron microscopy is used to characterize deformation within apatite grains. Systematic, crystallographically controlled deformation bands are present within apatite, consistent with tilt boundaries that contain the <c> (axis) and result from slip in <> (direction) on(plane) during shock deformation. Deformation bands contain complex subgrain domains, isolated dislocations, and low‐angle boundaries of ~1° to 2°. Planar fractures within apatite form conjugate sets that are oriented within either {, {, {, or. Complementary electron microprobe analyses (EPMA) of a subset of recrystallized and partially recrystallized apatite grains show that there is an apparent change in MgO content in shock‐recrystallized apatite compositions. This study shows that the response of apatite to shock deformation can be highly variable, and that application of a combined microstructural and chemical analysis workflow can reveal complex deformation histories in apatite grains, some of which result in changes to crystal structure and composition, which are important for understanding the genesis of apatite in both terrestrial and extraterrestrial environments.

 
more » « less
Award ID(s):
1737087 1737199
NSF-PAR ID:
10456817
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Meteoritics & Planetary Science
Volume:
55
Issue:
8
ISSN:
1086-9379
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere‐ionosphere coupling. Recent studies have shown that electron phase space holes can pitch‐angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018,https://doi.org/10.1063/1.5039687). In this study, we have re‐evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraft observations into computing electron diffusion rates and lifetimes. The most important electron hole properties in this evaluation are their distributions in velocity and spatial scale and electric field root‐mean‐square intensity (). Using direct measurements of electron holes during a plasma injection event observed by the Van Allen Probe at, we find that when4 mV/m electron lifetimes can drop below 1 h and are mostly within strong diffusion limits at energies below10 keV. During an injection observed by the THEMIS spacecraft at, electron holes with even typical intensities (1 mV/m) can deplete low‐energy (a few keV) plasma sheet electrons within tens of minutes following injections and convection from the tail. Our results confirm that electron holes are a significant contributor to plasma sheet electron precipitation during injections.

     
    more » « less
  2. Abstract

    The air‐sea exchange of oxygen (O2) is driven by changes in solubility, biological activity, and circulation. The total air‐sea exchange of O2has been shown to be closely related to the air‐sea exchange of heat on seasonal timescales, with the ratio of the seasonal flux of O2to heat varying with latitude, being higher in the extratropics and lower in the subtropics. This O2/heat ratio is both a fundamental biogeochemical property of air‐sea exchange and a convenient metric for testing earth system models. Current estimates of the O2/heat flux ratio rely on sparse observations of dissolved O2, leaving it fairly unconstrained. From a model ensemble we show that the ratio of the seasonal amplitude of two atmospheric tracers, atmospheric potential oxygen (APO) and the argon‐to‐nitrogen ratio (Ar/O2), exhibits a close relationship to the O2/heat ratio of the extratropics (40–). The amplitude ratio,/, is relatively constant within the extratropics of each hemisphere due to the zonal mixing of the atmosphere./is not sensitive to atmospheric transport, as most of the observed spatial variability in the seasonal amplitude ofAPO is compensated by similar variations in(Ar/). From the relationship between/heat and/in the model ensemble, we determine that the atmospheric observations suggest hemispherically distinct/heat flux ratios of 3.30.3 and 4.70.8 nmolbetween 40 andin the Northern and Southern Hemispheres respectively, providing a useful constraint forand heat air‐sea fluxes in earth system models and observation‐based data products.

     
    more » « less
  3. Abstract

    A detailed chemical kinetic model for oxidation of methylamine has been developed, based on theoretical work and a critical evaluation of data from the literature. The rate coefficients for the reactions of CHNH+ OCHNH/ CHNH + HO, CHNH+ HCH+ NH, CHNHCHNH, and CHNH + OCHNH + HOwere calculated from ab initio theory. The mechanism was validated against experimental results from batch reactors, flow reactors, shock tubes, and premixed flames. The model predicts satisfactorily explosion limits for CHNHand its oxidation in a flow reactor. However, oxidation in the presence of nitric oxide, which strongly promotes reaction at lower temperatures, is only described qualitatively. Furthermore, calculated flame speeds are higher than reported experimental values; the model does not capture the inhibiting effect of the NHgroup in CHNHcompared to CH. More work is desirable to confirm the products of the CHNH + NO reaction and to look into possible pathways to NHin methylamine oxidation.

     
    more » « less
  4. Key points

    Extreme aviation is accompanied by ever‐present risks of hypobaric hypoxia and decompression sickness. Neuroprotection against those hazards is conferred through fractional inspired oxygen () concentrations of 60–100% (hyperoxia).

    Hyperoxia reduces global cerebral perfusion (gCBF), increases reactive oxygen species within the brain and leads to cell death within the hippocampus. However, an understanding of hyperoxia's effect on cortical activity and concomitant levels of cognitive performance is lacking. This limits our understanding of whether hyperoxia could lower the brain's threshold of tolerance to physiological stressors inherent to extreme aviation, such as high gravitational forces.

    This study aimed to quantify the impact of hyperoxia upon global cerebral perfusion (gCBF), cognitive performance and cortical electroencephalography (EEG).

    Hyperoxia evoked a rapid reduction in gCBF, yet cognitive performance and vigilance were enhanced. EEG measurements revealed enhanced alpha power, suggesting less desynchrony, within the cortical temporal regions.

    Collectively, this work suggests hyperoxia‐induced brain hypoperfusion is accompanied by enhanced cognitive processing and cortical arousal.

    Abstract

    Extreme aviators continually inspire hyperoxic gas to mitigate risk of hypoxia and decompression injury. This neuroprotection carries a physiological cost: reduced cerebral perfusion (CBF). As reduced CBF may increase vulnerability to ever‐present physiological challenges during extreme aviation, we defined the magnitude and duration of hyperoxia‐induced changes in CBF, cortical electrical activity and cognition in 30 healthy males and females. Magnetic resonance imaging with pulsed arterial spin labelling provided serial measurements of global CBF (gCBF), first during exposure to 21% inspired oxygen () followed by a 30‐min exposure to 100% . High‐density EEG facilitated characterization of cortical activity during assessment of cognitive performance, also measured during exposure to 21% and 100% . Acid‐base physiology was measured with arterial blood gases. We found that exposure to 100% reduced gCBF to 63% of baseline values across all participants. Cognitive performance testing at 21% was accompanied by increased theta and beta power with decreased alpha power across multiple cortical areas. During cognitive testing at 100% , alpha activity was less desynchronized within the temporal regions than at 21% . The collective hyperoxia‐induced changes in gCBF, cognitive performance and EEG were similar across observed partial pressures of arterial oxygen (), which ranged between 276–548 mmHg, and partial pressures of arterial carbon dioxide (), which ranged between 34–50 mmHg. Sex did not influence gCBF response to 100% . Our findings suggest hyperoxia‐induced reductions in gCBF evoke enhanced levels of cortical arousal and cognitive processing, similar to those occurring during a perceived threat.

     
    more » « less
  5. Abstract

    Mineral inclusions are ubiquitous in metamorphic rocks and elastic models for host‐inclusion pairs have become frequently used tools for investigating pressure–temperature (P–T) conditions of mineral entrapment. Inclusions can retain remnant pressures () that are relatable to their entrapmentP–Tconditions using an isotropic elastic model andP–T–Vequations of state for host and inclusion minerals. Elastic models are used to constrainP–Tcurves, known as isomekes, which represent the possible inclusion entrapment conditions. However, isomekes require a temperature estimate for use as a thermobarometer. Previous studies obtained temperature estimates from thermometric methods external of the host‐inclusion system. In this study, we present the firstP–Testimates of quartz inclusion entrapment by integrating the quartz‐in‐garnet elastic model with titanium concentration measurements of inclusions and a Ti‐in‐quartz solubility model (QuiG‐TiQ). QuiG‐TiQ was used to determine entrapmentP–Tconditions of quartz inclusions in garnet from a quartzofeldspathic gneiss from Goodenough Island, part of the (ultra)high‐pressure terrane of Papua New Guinea. Raman spectroscopic measurements of the 128, 206, and 464 cm−1bands of quartz were used to calculate inclusion pressures using hydrostatic pressure calibrations (), a volume strain calculation (), and elastic tensor calculation (), that account for deviatoric stress.values calculated from the 128, 206, and 464 cm−1bands’ hydrostatic calibrations are significantly different from one another with values of 1.8 ± 0.1, 2.0 ± 0.1, and 2.5 ± 0.1 kbar, respectively. We quantified elastic anisotropy using the 128, 206 and 464 cm−1Raman band frequencies of quartz inclusions and stRAinMAN software (Angel, Murri, Mihailova, & Alvaro, 2019, 234:129–140). The amount of elastic anisotropy in quartz inclusions varied by ~230%. A subset of inclusions with nearly isotropic strains gives an averageandof 2.5 ± 0.2 and 2.6 ± 0.2 kbar, respectively. Depending on the sign and magnitude, inclusions with large anisotropic strains respectively overestimate or underestimate inclusion pressures and are significantly different (<3.8 kbar) from the inclusions that have nearly isotropic strains. Titanium concentrations were measured in quartz inclusions exposed at the surface of the garnet. The average Ti‐in‐quartz isopleth (19 ± 1 ppm [2σ]) intersects the average QuiG isomeke at 10.2 ± 0.3 kbar and 601 ± 6°C, which are interpreted as theP–Tconditions of quartzofeldspathic gneiss garnet growth and entrapment of quartz inclusions. TheP–Tintersection point of QuiG and Ti‐in‐quartz univariant curves represents mechanical and chemical equilibrium during crystallization of garnet, quartz, and rutile. These three minerals are common in many bulk rock compositions that crystallize over a wide range ofP–Tconditions thus permitting application of QuiG‐TiQ to many metamorphic rocks.

     
    more » « less