skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optically active distorted cyclic triptycenes: chiral stationary phases for HPLC
We have succeeded in developing triptycene-based chiral stationary phases with a distorted cyclic structure, which can resolve a series of axially chiral compounds.  more » « less
Award ID(s):
1410718
PAR ID:
10059144
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Royal Society of Chemistry (RSC)
Date Published:
Journal Name:
RSC Advances
Volume:
8
Issue:
37
ISSN:
2046-2069
Page Range / eLocation ID:
20483 to 20487
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A “chiral-in-chiral” structure is formed from chiral luminescent [Ru(bpy)3]2+ complexes within chiral inorganic frameworks for circularly polarized luminescence. 
    more » « less
  2. Chiral semiconductors have been recently suggested as the basic building blocks for the design of chiral optoelectronic and electronic devices for chiral emission and spintronics. Herein, we report that through the formation of a chiral/achiral heterostructure, one can develop a chiral system that integrates the merits of both chiral and achiral components for developing a demanded chiral emitter. In the R-(+)-(or S-(−)-)1-(1-naphthyl)-ethylammonium lead bromide/CsPbBr3 heterostructure, we show that the photoluminescence of CsPbBr3 carries a degree of circular polarization of around 1% at room temperature. It is explained that such chiral emission is enabled through the chiral self-trapped exitonic absorption of R-(+)- (or S-(−)-)1-(1-naphthyl)-ethylammonium lead bromide. This work may provide an alternative way to generate bright circularly polarized light from achiral materials, which has potential applications in spintronics, biosensing, and signal encryption. 
    more » « less
  3. Abstract Deep eutectic solvents (DES) or eutectic mixtures prepared with a chiral component can lead to new chiral solvents with applications that include asymmetric synthesis and chiral light emitting materials. DES have low melting points, because of strong interactions, such as hydrogen bonding, between components of the mixture. Mixtures are prepared with ammonium salts, tetrabutylammonium chloride ([TBA]Cl) and choline chloride ([Ch]Cl), as hydrogen bond acceptor (HBA) and L‐lactic acid, L‐leucic acid, L‐ascorbic acid, R/S‐acetoxypropionic acid, and methyl‐(S)‐lactate as chiral hydrogen bond donors (HBD). Eight combinations of the HBAs and HBDs were prepared, and a racemic mixture of dissymmetric chiral europium complexes was dissolved in the mixtures. The circularly polarized luminescence (CPL) spectra were measured to determine the chiral discrimination by these chiral solvents. The CPL spectra show that the handedness of the chiral HBD is important to the chiral discrimination exhibited. However, the inversion of the sign of the CPL spectra in 1 : 3 [TBA]Cl:L‐lactic acid vs. 1 : 3 [Ch]Cl:L‐lactic acid, and 1 : 1.5 [Ch]Cl:L‐leucic acid vs. 1 : 1 [TBA]Cl:L‐leucic acid shows that the achiral HBA also plays a critical role in the handedness of the chiral discrimination by the chiral solvent. 
    more » « less
  4. Experimental methods capable of selectively probing water at the DNA minor groove, major groove, and phosphate backbone are crucial for understanding how hydration influences DNA structure and function. Chiral-selective sum frequency generation spectroscopy (chiral SFG) is unique among vibrational spectroscopies because it can selectively probe water molecules that form chiral hydration structures around biomolecules. However, interpreting chiral SFG spectra is challenging since both water and the biomolecule can produce chiral SFG signals. Here, we combine experiment and computation to establish a theoretical framework for the rigorous interpretation of chiral SFG spectra of DNA. We demonstrate that chiral SFG detects the N–H stretch of DNA base pairs and the O–H stretch of water, exclusively probing water molecules in the DNA first hydration shell. Our analysis reveals that DNA transfers chirality to water molecules only within the first hydration shell, so they can be probed by chiral SFG spectroscopy. Beyond the first hydration shell, the electric field-induced water structure is symmetric and, therefore, precludes chiral SFG response. Furthermore, we find that chiral SFG can differentiate chiral subpopulations of first hydration shell water molecules at the minor groove, major groove, and phosphate backbone. Our findings challenge the scientific perspective dominant for more than 40 years that the minor groove “spine of hydration” is the only chiral water structure surrounding the DNA double helix. By identifying the molecular origins of the DNA chiral SFG spectrum, we lay a robust experimental and theoretical foundation for applying chiral SFG to explore the chemical and biological physics of DNA hydration. 
    more » « less
  5. Abstract Recently, chiral metal‐organic coordination materials have emerged as promising candidates for a wide range of applications in chiroptoelectronics, chiral catalysis, and information encryption, etc. Notably, the chiroptical effect of coordination chromophores makes them appealing for applications such as photodetectors, OLEDs, 3D displays, and bioimaging. The direct synthesis of chiral coordination materials using chiral organic ligands or complexes with metal‐centered chirality is very often tedious and costly. In the case of ionic coordination materials, the combination of chiral anions with cationic, achiral coordination compounds through noncovalent interactions may endow molecular materials with desirable chiroptical properties. The use of such a simple chiral strategy has been proven effective in inducing promising circular dichroism and/or circularly polarized luminescence signals. This concept article mainly delves into the latest advances in exploring the efficacy of such a chiral anion strategy for transforming achiral coordination materials into chromophores with superb photo‐ or electro‐chiroptical properties. In particular, ionic small‐molecular metal complexes, metal clusters, coordination supramolecular assemblies, and metal‐organic frameworks containing chiral anions are discussed. A perspective on the future opportunities on the preparation of chiroptical materials with the chiral anion strategy is also presented. 
    more » « less