Abstract Translation of chirality and asymmetry across structural motifs and length scales plays a fundamental role in nature, enabling unique functionalities in contexts ranging from biological systems to synthetic materials. Here, we introduce a structural chirality transfer across the organic–inorganic interface in two-dimensional hybrid perovskites using appropriate chiral organic cations. The preferred molecular configuration of the chiral spacer cations,R-(+)- orS-(−)-1-(1-naphthyl)ethylammonium and their asymmetric hydrogen-bonding interactions with lead bromide-based layers cause symmetry-breaking helical distortions in the inorganic layers, otherwise absent when employing a racemic mixture of organic spacers. First-principles modeling predicts a substantial bulk Rashba-Dresselhaus spin-splitting in the inorganic-derived conduction band with opposite spin textures betweenR- andS-hybrids due to the broken inversion symmetry and strong spin-orbit coupling. The ability to break symmetry using chirality transfer from one structural unit to another provides a synthetic design paradigm for emergent properties, including Rashba-Dresselhaus spin-polarization for hybrid perovskite spintronics and related applications.
more »
« less
Chiral photon emission from a chiral–achiral perovskite heterostructure
Chiral semiconductors have been recently suggested as the basic building blocks for the design of chiral optoelectronic and electronic devices for chiral emission and spintronics. Herein, we report that through the formation of a chiral/achiral heterostructure, one can develop a chiral system that integrates the merits of both chiral and achiral components for developing a demanded chiral emitter. In the R-(+)-(or S-(−)-)1-(1-naphthyl)-ethylammonium lead bromide/CsPbBr3 heterostructure, we show that the photoluminescence of CsPbBr3 carries a degree of circular polarization of around 1% at room temperature. It is explained that such chiral emission is enabled through the chiral self-trapped exitonic absorption of R-(+)- (or S-(−)-)1-(1-naphthyl)-ethylammonium lead bromide. This work may provide an alternative way to generate bright circularly polarized light from achiral materials, which has potential applications in spintronics, biosensing, and signal encryption.
more »
« less
- Award ID(s):
- 2024972
- PAR ID:
- 10562941
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 124
- Issue:
- 11
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Rational design of chiral two‐dimensional hybrid organic–inorganic perovskites is crucial to achieve chiroptoelecronic, spintronic, and ferroelectric applications. Here, an efficient way to manipulate the chiroptoelectronic activity of 2D lead iodide perovskites is reported by forming mixed chiral (R‐ or S‐methylbenzylammonium (R‐MBA+or S‐MBA+)) and achiral (n‐butylammonium (nBA+)) cations in the organic layer. The strongest and flipped circular dichroism signals are observed in (R/S‐MBA0.5nBA0.5)2PbI4films compared to (R/S‐MBA)2PbI4. Moreover, the (R/S‐MBA0.5nBA0.5)2PbI4films exhibit pseudo‐symmetric, unchanged circularly polarized photoluminescence peak as temperature increases. First‐principles calculations reveal that mixed chiral–achiral cations enhance the asymmetric hydrogen‐bonding interaction between the organic and inorganic layers, causing more structural distortion, thus, larger spin‐polarized band‐splitting than pure chiral cations. Temperature‐dependent powder X‐ray diffraction and pair distribution function structure studies show the compressed intralayer lattice with enlarged interlayer spacing and increased local ordering. Overall, this work demonstrates a new method to tune chiral and chiroptoelectronic properties and reveals their atomic scale structural origins.more » « less
-
Abstract Deep eutectic solvents (DES) or eutectic mixtures prepared with a chiral component can lead to new chiral solvents with applications that include asymmetric synthesis and chiral light emitting materials. DES have low melting points, because of strong interactions, such as hydrogen bonding, between components of the mixture. Mixtures are prepared with ammonium salts, tetrabutylammonium chloride ([TBA]Cl) and choline chloride ([Ch]Cl), as hydrogen bond acceptor (HBA) and L‐lactic acid, L‐leucic acid, L‐ascorbic acid, R/S‐acetoxypropionic acid, and methyl‐(S)‐lactate as chiral hydrogen bond donors (HBD). Eight combinations of the HBAs and HBDs were prepared, and a racemic mixture of dissymmetric chiral europium complexes was dissolved in the mixtures. The circularly polarized luminescence (CPL) spectra were measured to determine the chiral discrimination by these chiral solvents. The CPL spectra show that the handedness of the chiral HBD is important to the chiral discrimination exhibited. However, the inversion of the sign of the CPL spectra in 1 : 3 [TBA]Cl:L‐lactic acid vs. 1 : 3 [Ch]Cl:L‐lactic acid, and 1 : 1.5 [Ch]Cl:L‐leucic acid vs. 1 : 1 [TBA]Cl:L‐leucic acid shows that the achiral HBA also plays a critical role in the handedness of the chiral discrimination by the chiral solvent.more » « less
-
Abstract A fundamental understanding of the enantiospecific interactions between chiral adsorbates and understanding of their interactions with chiral surfaces is key to unlocking the origins of enantiospecific surface chemistry. Herein, the adsorption and decomposition of the amino acid proline (Pro) have been studied on the achiral Cu(110) and Cu(111) surfaces and on the chiral Cu(643)R&Ssurfaces. Isotopically labelled 1‐13C‐l‐Pro has been used to probe the Pro decomposition mechanism and to allow mass spectrometric discrimination ofd‐Pro and 1‐13C‐l‐Pro when adsorbed as mixtures. On the Cu(111) surface, X‐ray photoelectron spectroscopy reveals that Pro adsorbs as an anionic species in the monolayer. On the chiral Cu(643)R&Ssurface, adsorbed Pro enantiomers decompose with non‐enantiospecific kinetics. However, the decomposition kinetics were found to be different on the terraces versus the kinked steps. Exposure of the chiral Cu(643)R&Ssurfaces to a racemic gas phase mixture ofd‐Pro and 1‐13C‐l‐Pro resulted in the adsorption of a racemic mixture; i.e., adsorption is not enantiospecific. However, exposure to non‐racemic mixtures ofd‐Pro and 1‐13C‐l‐Pro resulted in amplification of enantiomeric excess on the surface, indicative of homochiral aggregation of adsorbed Pro. During co‐adsorption, this amplification is observed even at very low coverages, quite distinct from the behavior of other amino acids, which begin to exhibit homochiral aggregation only after reaching monolayer coverages. The equilibrium adsorption ofd‐Pro and 1‐13C‐l‐Pro mixtures on achiral Cu(110) did not display any aggregation, consistent with prior scanning tunneling microscopy (STM) observations ofdl‐Pro/Cu(110). This demonstrates convergence between findings from equilibrium adsorption methods and STM experiments and corroborates formation of a 2D random solid solution.more » « less
-
A localized Zeeman field, intensified at heterostructure interfaces, could play a crucial role in a broad area including spintronics and unconventional superconductors. Conventionally, the generation of a local Zeeman field is achieved through magnetic exchange coupling with a magnetic material. However, magnetic elements often introduce defects, which could weaken or destroy superconductivity. Alternatively, the coupling between a superconductor with strong spin-orbit coupling and a nonmagnetic chiral material could serve as a promising approach to generate a spin-active interface. Here, we leverage an interface superconductor, namely, induced superconductivity in noble metal surface states, to probe the spin-active interface. Our results unveil an enhanced interface Zeeman field, which selectively closes the surface superconducting gap while preserving the bulk superconducting pairing. The chiral material, i.e., trigonal tellurium, also induces Andreev bound states (ABS) exhibiting spin polarization. The field dependence of ABS manifests a substantially enhanced interface Landég-factor (geff~ 12), thereby corroborating the enhanced interface Zeeman energy.more » « less