skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of glycine functionalization of 2D titanium carbide (MXene) on charge storage
Restacking of two-dimensional (2D) flakes reduces the accessibility of electrolyte ions and is a problem in energy storage and other applications. Organic molecules can be used to prevent restacking and keep the interlayer space open. Here, we report on a combined theoretical and experimental investigation of the interaction between 2D titanium carbide (MXene), Ti 3 C 2 T x , and glycine. From first principle calculations, we presented the functionalization of glycine on the Ti 3 C 2 O 2 surface, evidenced by the shared electrons between Ti and N atoms. To experimentally validate our predictions, we synthesized flexible freestanding films of Ti 3 C 2 T x /glycine hybrids. X-ray diffraction and X-ray photoelectron spectroscopy confirmed the increased interlayer spacing and possible Ti–N bonding, respectively, which agree with our theoretical predictions. The Ti 3 C 2 T x /glycine hybrid films exhibited an improved rate and cycling performances compared to pristine Ti 3 C 2 T x , possibly due to better charge percolation within expanded Ti 3 C 2 T x .  more » « less
Award ID(s):
1740795
PAR ID:
10059194
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
6
Issue:
11
ISSN:
2050-7488
Page Range / eLocation ID:
4617 to 4622
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ti3C2TxMXene membranes have attracted considerable interest due to their exceptional water transport properties, yet the role of cation intercalation on governing transport remains poorly understood. In this experimental and theoretical study, it shows how intercalation with K+, Na+, Li+, Ca2+, and Mg2+modulates both the nanochannel architecture and water flux of Ti3C2Txmembranes. Unlike in graphene oxide analogs, cations with larger hydration diameters in Ti3C2Txexpand the interlayer spacing, widening flow channels, enhancing slip length of these nanochannels, and boosting water flux from 31.45 to 61.86 L m−2 h−1. To overcome intrinsically poor adhesion of Ti3C2Txto polymeric supports, this study incorporates a thin polyvinyl‐alcohol interlayer, which substantially enhances mechanical robustness and structural integrity. Together, these findings elucidate how cation hydration controls water transport and offer a flexible strategy for tailoring MXene membrane performance. 
    more » « less
  2. Abstract 3D continuous mesoscale architectures of nanomaterials possess the potential to revolutionize real‐time electrochemical biosensing through higher active site density and improved accessibility for cell proliferation. Herein, 3D microporous Ti3C2TXMXene biosensors are fabricated to monitor antibiotic release in tissue engineering scaffolds. The Ti3C2TX‐coated 3D electrodes are prepared by conformal MXene deposition on 3D‐printed polymer microlattices. The Ti3C2TXMXene coating facilitates direct electron transfer, leading to the efficient detection of common antibiotics such as gentamicin and vancomycin. The 3D microporous architecture exposes greater electrochemically active MXene surface area, resulting in remarkable sensitivity for detecting gentamicin (10–1 mM) and vancomycin (100–1 mM), 1000 times more sensitive than control electrodes composed of 2D planar films of Ti3C2TXMXene. To characterize the suitability of 3D microporous Ti3C2TXMXene sensors for monitoring drug elution in bone tissue regeneration applications, osteoblast‐like (MG‐63) cells are seeded on the 3D MXene microlattices for 3, 5, and 7 days. Cell proliferation on the 3D microporous MXene is tracked over 7 days, demonstrating its promising biocompatibility and its clinical translation potential. Thus, 3D microporous Ti3C2TXMXene can provide a platform for mediator‐free biosensing, enabling new applications for in vivo monitoring of drug elution. 
    more » « less
  3. Abstract MXenes, two‐dimensional (2D) transition metal carbides and/or nitrides, possess surface termination groups such as hydroxyl, oxygen, and fluorine, which are available for surface functionalization. Their surface chemistry is critical in many applications. This article reports amine functionalization of Ti3C2TxMXene surface with [3‐(2‐aminoethylamino)‐propyl]trimethoxysilane (AEAPTMS). Characterization techniques such as X‐ray photoelectron spectroscopy verify the success of the surface functionalization and confirm that the silane coupling agent bonds to Ti3C2Txsurface both physically and chemically. The functionalization changes the MXene surface charge from −35 to +25 mV at neutral pH, which allows for in situ preparation of self‐assembled films. Further, surface charge measurements of the functionalized MXene at different pH values show that the functionalized MXene has an isoelectric point at a pH around 10.7, and the highest reported positive surface charge of +62 mV at a pH of 2.58. Furthermore, the existence of a mixture of different orientations of AEAPTMS and the simultaneous presence of protonated and free amine groups on the surface of Ti3C2Txare demonstrated. The availability of free amine groups on the surface potentially permits the fabrication of crosslinked electrically conductive MXene/epoxy composites, dye adsorbents, high‐performance membranes, and drug carriers. Surface modifications of this type are applicable to many other MXenes. 
    more » « less
  4. null (Ed.)
    Abstract Here we report for the first time that Ti 3 C 2 T x /polymer composite films rapidly heat when exposed to low-power radio frequency fields. Ti 3 C 2 T x MXenes possess a high dielectric loss tangent, which is correlated with this rapid heating under electromagnetic fields. Thermal imaging confirms that these structures are capable of extraordinary heating rates (as high as 303 K/s) that are frequency- and concentration-dependent. At high loading (and high conductivity), Ti 3 C 2 T x MXene composites do not heat under RF fields due to reflection of electromagnetic waves, whereas composites with low conductivity do not heat due to the lack of an electrical percolating network. Composites with an intermediate loading and a conductivity between 10–1000 S m −1 rapidly generate heat under RF fields. This finding unlocks a new property of Ti 3 C 2 T x MXenes and a new material for potential RF-based applications. 
    more » « less
  5. Abstract Ti3C2Txbelongs to the family of MXenes, 2D materials with an attractive combination of functional properties suitable for applications such as batteries, supercapacitors, and strain sensors. However, the fabrication of devices and functional coatings based on Ti3C2Txremains challenging as they are prone to chemical degradation by their oxidation to TiO2. In this paper, we examine the oxidation of Ti3C2Txin air, liquid, and solid media via conductivity measurements to assess the shelf life of Ti3C2TxMXenes. The oxidation of Ti3C2Txwas observed in all the media used in this study, but it is fastest in liquid media and slowest in solid media (including polymer matrices). We also show that the conventional indicators of MXene oxidation, such as changes in color and colloidal stability, are not always reliable. Finally, we demonstrate the acceleration of oxidation under exposure to UV light. 
    more » « less