Abstract MXenes are among the fastest‐growing families of 2D materials, promising for high‐rate, high‐energy energy storage applications due to their high electronic and ionic conductivity, large surface area, and reversible surface redox ability. The Ti3C2TxMXene shows a capacitive charge storage mechanism in diluted aqueous LiCl electrolyte while achieving abnormal redox‐like features in the water‐in‐salt LiCl electrolyte. Herein, variousoperandotechniques are used to investigate changes in resistance, mass, and electrode thickness of Ti3C2Txduring cycling in salt‐in‐water and water‐in‐salt LiCl electrolytes. Significant resistance variations due to interlayer space changes are recorded in the water‐in‐salt LiCl electrolyte. In both electrolytes, conductivity variations attributed to charge carrier density changes or varied inter‐sheet electron hopping barriers are detected in the capacitive areas, where no thickness variations are observed. Overall, combining thoseoperandotechniques enhances the understanding of charge storage mechanisms and facilitates the development of MXene‐based energy storage devices. 
                        more » 
                        « less   
                    This content will become publicly available on August 13, 2026
                            
                            Tuning Water Transport through Nanochannels of Robust Cation‐Intercalated Ti 3 C 2 T x MXene Membranes
                        
                    
    
            Ti3C2TxMXene membranes have attracted considerable interest due to their exceptional water transport properties, yet the role of cation intercalation on governing transport remains poorly understood. In this experimental and theoretical study, it shows how intercalation with K+, Na+, Li+, Ca2+, and Mg2+modulates both the nanochannel architecture and water flux of Ti3C2Txmembranes. Unlike in graphene oxide analogs, cations with larger hydration diameters in Ti3C2Txexpand the interlayer spacing, widening flow channels, enhancing slip length of these nanochannels, and boosting water flux from 31.45 to 61.86 L m−2 h−1. To overcome intrinsically poor adhesion of Ti3C2Txto polymeric supports, this study incorporates a thin polyvinyl‐alcohol interlayer, which substantially enhances mechanical robustness and structural integrity. Together, these findings elucidate how cation hydration controls water transport and offer a flexible strategy for tailoring MXene membrane performance. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2134607
- PAR ID:
- 10633002
- Publisher / Repository:
- Chemistry Europe
- Date Published:
- Journal Name:
- ChemSusChem
- ISSN:
- 1864-5631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The chemical stability of 2D MXene nanosheets in aqueous dispersions must be maintained to foster their widespread application. MXene nanosheets react with water, which results in the degradation of their 2D structure into oxides and carbon residues. The latter detrimentally restricts the shelf life of MXene dispersions and devices. However, the mechanism of MXene degradation in aqueous environment has yet to be fully understood. In this work, the oxidation kinetics is investigated of Ti3C2Txand Ti2CTxin aqueous media as a function of initial pH values, ionic strengths, and nanosheet concentrations. The pH value of the dispersion is found to change with time as a result of MXene oxidation. Specifically, MXene oxidation is accelerated in basic media by their reaction with hydroxyl anions. It is also demonstrated that oxidation kinetics are strongly dependent on nanosheet dispersion concentration, in which oxidation is accelerated for lower MXene concentrations. Ionic strength does not strongly affect MXene oxidation. The authors also report that citric acid acts as an effective antioxidant and mitigates the oxidation of both Ti3C2Txand Ti2CTxMXenes. Reactive molecular dynamic simulations suggest that citric acid associates with the nanosheet edge to hinder the initiation of oxidation.more » « less
- 
            Abstract MXenes constitute a rapidly growing family of 2D materials that are promising for optoelectronic applications because of numerous attractive properties, including high electrical conductivity. However, the most widely used titanium carbide (Ti3C2Tx) MXene transparent conductive electrode exhibits insufficient environmental stability and work function (WF), which impede practical applications Ti3C2Txelectrodes in solution‐processed optoelectronics. Herein, Ti3C2TxMXene film with a compact structure and a perfluorosulfonic acid (PFSA) barrier layer is presented as a promising electrode for organic light‐emitting diodes (OLEDs). The electrode shows excellent environmental stability, highWFof 5.84 eV, and low sheet resistanceRSof 97.4 Ω sq−1. The compact Ti3C2Txstructure after thermal annealing resists intercalation of moisture and environmental contaminants. In addition, the PFSA surface modification passivates interflake defects and modulates theWF. Thus, changes in theWFandRSare negligible even after 22 days of exposure to ambient air. The Ti3C2TxMXene is applied for large‐area, 10 × 10 passive matrix flexible OLEDs on substrates measuring 6 × 6 cm. This work provides a simple but efficient strategy to overcome both the limited environmental stability and lowWFof MXene electrodes for solution‐processable optoelectronics.more » « less
- 
            Abstract Surface chemistry and core composition of 2D MXenes play a major role in their interfacial properties, but the determination and quantification of their bonding environments remain challenging. X‐ray Photoelectron Spectroscopy (XPS) is a method of choice that is broadly utilized but is often hindered by large uncertainties and systematic bias due to adsorbed species such as adventitious carbon or etching residues. In this work, energy‐dependent XPS and depth profile modeling of the Ti3C2TxMXene surface are employed to differentiate the contributions from the MXene and the adsorbed species, thereby increasing the accuracy of quantification. In comparison, uncorrected lab‐based XPS suffers from a systematic overestimation of Ti vacancies by 7% and an underestimation of terminal atoms, particularly F, by as much as 15%. Interestingly, it is found that a simple inelastic mean free path correction is sufficient to address the issue and reveals extremely low defects in Ti3C2TxMXene synthesized using the HF/HCl etching route. Soft X‐ray Absorption Spectroscopy (XAS), supported by Density Functional Theory (DFT) calculations, also demonstrates a high chemical sensitivity of the surface terminations. This work provides novel insights into XPS quantification and the use of XAS for probing the carbide core and surface chemistry of Ti3C2TxMXenes.more » « less
- 
            Abstract MXenes, a family of 2D transition‐metal carbides and nitrides, have excellent electrical conductivity and unique optical properties. However, MXenes oxidize in ambient conditions, which is accelerated upon heating. Intercalation of water also causes hydrolysis accelerating oxidation. Developing new tools to readily characterize MXenes’ thermal stability can enable deeper insights into their structure–property relationships. Here, in situ spectroscopic ellipsometry (SE) is employed to characterize the optical properties of three types of MXenes (Ti3C2Tx, Mo2TiC2Tx, and Ti2CTx) with varied composition and atomistic structures to investigate their thermal degradation upon heating under ambient environment. It is demonstrated that changes in MXene extinction and optical conductivity in the visible and near‐IR regions correlate well with the amount of intercalated water and hydroxyl termination groups and the degree of oxidation, measured using thermogravimetric analysis. Among the three MXenes, Ti3C2Txand Ti2CTx, respectively, have the highest and lowest thermal stability, indicating the role of transition‐metal type, synthesis route, and the number of atomic layers in MXene flakes. These findings demonstrate the utility of SE as a powerful in situ technique for rapid structure–property relationship studies paving the way for the further design, fabrication, and property optimization of novel MXene materials.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
