skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A paramedic treatment for modeling explicitly solvated chemical reaction mechanisms
A static QM procedure for modeling solvated reaction mechanisms is calibrated using the Morita–Baylis–Hillman reaction.  more » « less
Award ID(s):
1653392
PAR ID:
10059340
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Royal Society of Chemistry (RSC)
Date Published:
Journal Name:
Chemical Science
Volume:
9
Issue:
24
ISSN:
2041-6520
Page Range / eLocation ID:
5341 to 5346
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complimentary reaction conditions can cover more reactant space than a single general reaction condition. We present an active learning algorithm to rapidly discover these high coverage sets of complimentary reaction conditions. 
    more » « less
  2. A plasmon-driven deprotonation reaction of the aromatic methyl group can occur in aqueous solution under the illumination of red light. The reaction produces a benzyl radical and anion, and dimers through a self-reaction. 
    more » « less
  3. Abstract During the X-ray bursts of GS 1826−24, a “clocked burster”, the nuclear reaction flow that surges through the rapid-proton capture process path has to pass through the NiCu cycles before reaching the ZnGa cycles that moderate further hydrogen burning in the region above the germanium and selenium isotopes. The 57 Cu(p, γ ) 58 Zn reaction that occurs in the NiCu cycles plays an important role in influencing the burst light curves found by Cyburt et al. We deduce the 57 Cu(p, γ ) 58 Zn reaction rate based on the experimentally determined important nuclear structure information, isobaric-multiplet-mass equation, and large-scale shell-model calculations. Based on the isobaric-multiplet-mass equation, we propose a possible order of 1 1 + - and 2 3 + -dominant resonance states and constrain the resonance energy of the 1 2 + state. The latter reduces the contribution of the 1 2 + -dominant resonance state. The new reaction rate is up to a factor of 4 lower than the Forstner et al. rate recommended by JINA REACLIB v2.2 at the temperature regime sensitive to clocked bursts of GS 1826−24. Using the simulation from the one-dimensional implicit hydrodynamic code K epler to model the thermonuclear X-ray bursts of the GS 1826−24 clocked burster, we find that the new 57 Cu(p, γ ) 58 Zn reaction rate, coupled with the latest 56 Ni(p, γ ) 57 Cu and 55 Ni(p, γ ) 56 Cu reaction rates, redistributes the reaction flow in the NiCu cycles and strongly influences the burst ash composition, whereas the 59 Cu(p, α ) 56 Ni and 59 Cu(p, γ ) 60 Zn reactions suppress the influence of the 57 Cu(p, γ ) 58 Zn reaction and diminish the impact of nuclear reaction flow that bypasses the important 56 Ni waiting point induced by the 55 Ni(p, γ ) 56 Cu reaction on the burst light curve. 
    more » « less
  4. Liu, W.; Wang, Y.; Guo, B.; Tang, X.; Zeng, S. (Ed.)
    In Type-I X-ray bursts (XRBs), the rapid-proton capture (rp-) process passes through the NiCu and ZnGa cycles before reaching the region above Ge and Se isotopes that hydrogen burning actively powers the XRBs. The sensitivity study performed by Cyburt et al . [1] shows that the 57 Cu(p, γ ) 58 Zn reaction in the NiCu cycles is the fifth most important rp-reaction influencing the burst light curves. Langer et al . [2] precisely measured some low-lying energy levels of 58 Zn to deduce the 57 Cu(p, γ ) 58 Zn reaction rate. Nevertheless, the order of the 1 + 1 and 2 + 3 resonance states that dominate at 0:2 ≲ T (GK) ≲ 0:8 is not confirmed. The 1 + 2 resonance state, which dominates at the XRB sensitive temperature regime 0:8 ≲ T (GK) ≲ 2 was not detected. Using isobaric-multipletmass equation (IMME), we estimate the order of the 1 + 1 and 2 + 3 resonance states and estimate the lower limit of the 1 + 2 resonance energy. We then determine the 57 Cu(p, γ ) 58 Zn reaction rate using the full pf -model space shell model calculations. The new rate is up to a factor of four lower than the Forstner et al . [3] rate recommended by JINA REACLIBv2.2. Using the present 57 Cu(p, γ ) 58 Zn, the latest 56 Ni(p, γ ) 57 Cu and 55 Ni(p, γ ) 56 Cu reaction rates, and 1D implicit hydrodynamic K epler code, we model the thermonuclear XRBs of the clocked burster GS 1826–24. We find that the new rates regulate the reaction flow in the NiCu cycles and strongly influence the burst-ash composition. The 59 Cu(p, γ ) 56 Ni and 59 Cu(p, α ) 60 Zn reactions suppress the influence of the 57 Cu(p, γ ) 58 Zn reaction. They strongly diminish the impact of the nuclear reaction flow that bypasses the 56 Ni waiting point induced by the 55 Ni(p, γ ) 56 Cu reaction on burst light curve. 
    more » « less
  5. Abstract The20Ne(α,p)23Na reaction rate is important in determining the final abundances of various nuclei produced in type Ia supernovae. Previously, the ground state cross section was calculated from time reversal reaction experiments using detailed balance. The reaction rates extracted from these studies do not consider contributions from the population of excited states, and therefore, are only estimates. A resonance scan, populating both the ground and first excited states, was performed for the20Ne(α,p)23Na reaction, measuring between 2.9 and 5 MeV center of mass energies at the Nuclear Science Lab at the University of Notre Dame. Data analysis is underway and preliminary results show substantial contribution from the excited state reaction. 
    more » « less