skip to main content


Title: GUIDES: Geospatial Urban Infrastructure Data Engineering Solutions
The digitization of legacy infrastructure constitutes an important component of smart cities. While most cities worldwide possess digital maps of their transportation infrastructure, few have accurate digital information on their electric, natural gas, telecom, water, wastewater, and district heating and cooling systems. Digitizing data on legacy infrastructure systems comes with several challenges such as missing data, data conversion issues, data inconsistency, differences in the data format, spatio-temporal resolutions, structure, semantics and syntax, difficulty in providing controlled access to the datasets, and so on. Therefore, we introduce GUIDES, a new data conversion and management framework for urban infrastructure systems, which is comprised of big data analytics, efficient data management techniques, semantic web technologies, methods to ensure information security, and tools that aid visual analytics. The proposed framework facilitates: (i) mapping of urban infrastructure systems; (ii) integration of heterogeneous geospatial data; (iii) a secured way of storing, analyzing and querying data while preserving the semantics; (iv) qualitative and quantitative analysis over several spatio-temporal resolutions; and (v) visualization of static (e.g., land use) and dynamic (e.g., road traffic) information.  more » « less
Award ID(s):
1646395 1618126 1213013 1331800
NSF-PAR ID:
10059475
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The recent explosion in the number and size of spatio-temporal data sets from urban environments and social sensors creates new opportunities for data-driven approaches to understand and improve cities. Visual analytics systems like Urbane aim to empower domain experts to explore multiple data sets, at different time and space resolutions. Since these systems rely on computationally-intensive spatial aggregation queries that slice and summarize the data over different regions, an important challenge is how to attain interactivity. While traditional pre-aggregation approaches support interactive exploration, they are unsuitable in this setting because they do not support ad-hoc query constraints or polygons of arbitrary shapes. To address this limitation, we have recently proposed Raster Join, an approach that converts a spatial aggregation query into a set of drawing operations on a canvas and leverages the rendering pipeline of the graphics hardware (GPU). By doing so, Raster Join evaluates queries on the fly at interactive speeds on commodity laptops and desktops. In this demonstration, we showcase the efficiency of Raster Join by integrating it with Urbane and enabling interactivity. Demo visitors will interact with Urbane to filter and visualize several urban data sets over multiple resolutions. 
    more » « less
  2. Over the past several decades, urban planning has considered a variety of advanced analysis methods with greater and lesser degrees of adoption. Geographic Information Systems (GIS) is probably the most notable, with others such as database management systems (DBMS), decision support systems (DSS), planning support systems (PSS), and expert systems (ES), having mixed levels of recognition and acceptance (Kontokosta, C. E. (2021). Urban informatics in the science and practice of planning. Journal of Planning Education and Research, 41(4), 382–395. doi:10.1177/0739456X18793716; Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473). Advances in information technologies have moved very slowly in the field of urban planning, more recently concerning ‘smart city’ technologies while revolutionizing other domains, such as consumer goods and services. Baidu, Amazon, Netflix, Google, and many others are using these technologies to gain insights into consumer behaviour and characteristics and improve supply chains and logistics. This is an opportune time for urban planners to consider the application of AI-related techniques given vast increases in data availability, increased processing speeds, and increased popularity and development of planning related applications. Research on these topics by urban planning scholars has increased over the past few years, but there is little evidence to suggest that the results are making it into the hands of professional planners (Batty, M. (2018). Artificial intelligence and smart cities. Environment and Planning B: Urban Analytics and City Science, 45(1), 3–6; Batty, M. (2021). Planning education in the digital age. Environment and Planning B: Urban Analytics and City Science, 48(2), 207–211). Others encourage planners to leverage the ubiquity of data and advances in computing to enhance redistributive justice in information resources and procedural justice in decision-making among marginalized communities (Boeing, G., Besbris, M., Schachter, A., & Kuk, J. (2020). Housing search in the Age of Big data: Smarter cities or the same Old blind spots? Housing Policy Debate, 31(1), 112–126; Goodspeed, R. (2015). Smart cities: Moving beyond urban cybernetics to tackle wicked problems. Cambridge journal of regions, Economy and Society, 8(1), 79–92). This article highlights findings from a recent literature review on AI in planning and discusses the results of a national survey of urban planners about their perspectives on AI adoption and concerns they have expressed about its broader use in the profession. Currently, the outlook is mixed, matching how urban planners initially viewed the early stages of computer adoption within the profession. And yet today, personal computers are essential to any job. 
    more » « less
  3. Advanced air mobility (AAM) is an emerging sector in aviation aiming to offer secure, efficient, and eco-friendly transportation utilizing electric vertical takeoff and landing (eVTOL) aircraft. These vehicles are designed for short-haul flights, transporting passengers and cargo between urban centers, suburbs, and remote areas. As the number of flights is expected to rise significantly in congested metropolitan areas, there is a need for a digital ecosystem to support the AAM platform. This ecosystem requires seamless integration of air traffic management systems, ground control systems, and communication networks, enabling effective communication between AAM vehicles and ground systems to ensure safe and efficient operations. Consequently, the aviation industry is seeking to develop a new aerospace framework that promotes shared aerospace practices, ensuring the safety, sustainability, and efficiency of air traffic operations. However, the lack of adequate wireless coverage in congested cities and disconnected rural communities poses challenges for large-scale AAM deployments. In the immediate recovery phase, incorporating AAM with new air-to-ground connectivity presents difficulties such as overwhelming the terrestrial network with data requests, maintaining link reliability, and managing handover occurrences. Furthermore, managing eVTOL traffic in urban areas with congested airspace necessitates high levels of connectivity to support air routing information for eVTOL vehicles. This paper introduces a novel concept addressing future flight challenges and proposes a framework for integrating operations, infrastructure, connectivity, and ecosystems in future air mobility. Specifically, it includes a performance analysis to illustrate the impact of extensive AAM vehicle mobility on ground base station network infrastructure in urban environments. This work aims to pave the way for future air mobility by introducing a new vision for backbone infrastructure that supports safe and sustainable aviation through advanced communication technology.

     
    more » « less
  4. null (Ed.)
    Recent decades have witnessed the breakthrough of autonomous vehicles (AVs), and the sensing capabilities of AVs have been dramatically improved. Various sensors installed on AVs will be collecting massive data and perceiving the surrounding traffic continuously. In fact, a fleet of AVs can serve as floating (or probe) sensors, which can be utilized to infer traffic information while cruising around the roadway networks. Unlike conventional traffic sensing methods relying on fixed location sensors or moving sensors that acquire only the information of their carrying vehicle, this paper leverages data from AVs carrying sensors for not only the information of the AVs, but also the characteristics of the surrounding traffic. A high-resolution data-driven traffic sensing framework is proposed, which estimates the fundamental traffic state characteristics, namely, flow, density and speed in high spatio-temporal resolutions and of each lane on a general road, and it is developed under different levels of AV perception capabilities and for any AV market penetration rate. Experimental results show that the proposed method achieves high accuracy even with a low AV market penetration rate. This study would help policymakers and private sectors (e.g., Waymo) to understand the values of massive data collected by AVs in traffic operation and management. 
    more » « less
  5. Abstract

    Cities are the drivers of socioeconomic innovation and are also forced to address the accelerating risk of failure in providing essential services such as water supply today and in the future. Here, we investigate the resilience of urban water supply security, which is defined in terms of the services that citizens receive. The resilience of services is determined by the availability and robustness of critical system elements or “capitals” (water resources, infrastructure, finances, management efficacy, and community adaptation). We translate quantitative information about this portfolio of capitals from seven contrasting cities on four continents into parameters of a coupled system dynamics model. Water services are disrupted by recurring stochastic shocks, and we simulate the dynamics of impact and recovery cycles. Resilience emerges under various constraints, expressed in terms of each city's capital portfolio. Systematic assessment of the parameter space produces the urban water resilience landscape, and we determine the position of each city along a continuous gradient from water insecure and nonresilient to secure and resilient systems. In several cities stochastic disturbance regimes challenge steady‐state conditions and drive system collapse. While water insecure and nonresilient cities risk being pushed into a poverty trap, cities which have developed excess capitals risk being trapped in rigidity and crossing a tipping point from high to low services and collapse. Where public services are insufficient, community adaptation improves water security and resilience to varying degrees. Our results highlight the need for resilience thinking in the governance of urban water systems under global change pressures.

     
    more » « less