skip to main content

Title: Estimation of the covariance structure of heavy-tailed distributions
We propose and analyze a new estimator of the covariance matrix that admits strong theoretical guarantees under weak assumptions on the underlying distribution, such as existence of moments of only low order. While estimation of covariance matrices corresponding to sub-Gaussian distributions is well-understood, much less in known in the case of heavy-tailed data. As K. Balasubramanian and M. Yuan write, "data from real-world experiments oftentimes tend to be corrupted with outliers and/or exhibit heavy tails. In such cases, it is not clear that those covariance matrix estimators .. remain optimal" and "what are the other possible strategies to deal with heavy tailed distributions warrant further studies." We make a step towards answering this question and prove tight deviation inequalities for the proposed estimator that depend only on the parameters controlling the intrinsic dimension'' associated to the covariance matrix (as opposed to the dimension of the ambient space); in particular, our results are applicable in the case of high-dimensional observations.
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. We offer a survey of recent results on covariance estimation for heavy- tailed distributions. By unifying ideas scattered in the literature, we propose user-friendly methods that facilitate practical implementation. Specifically, we introduce element-wise and spectrum-wise truncation operators, as well as their M-estimator counterparts, to robustify the sample covariance matrix. Different from the classical notion of robustness that is characterized by the breakdown property, we focus on the tail robustness which is evidenced by the connection between nonasymptotic deviation and confidence level. The key observation is that the estimators needs to adapt to the sample size, dimensional- ity of the data and the noise level to achieve optimal tradeoff between bias and robustness. Furthermore, to facilitate their practical use, we propose data-driven procedures that automatically calibrate the tuning parameters. We demonstrate their applications to a series of structured models in high dimensions, including the bandable and low-rank covariance matrices and sparse precision matrices. Numerical studies lend strong support to the proposed methods.
  2. Abstract: We consider the problem of estimating the covariance structure of a random vector $Y\in \mathbb R^d$ from a sample $Y_1,\ldots,Y_n$. We are interested in the situation when d is large compared to n but the covariance matrix $\Sigma$ of interest has (exactly or approximately) low rank. We assume that the given sample is (a) $\epsilon$-adversarially corrupted, meaning that $\epsilon$ fraction of the observations could have been replaced by arbitrary vectors, or that (b) the sample is i.i.d. but the underlying distribution is heavy-tailed, meaning that the norm of Y possesses only 4 finite moments. We propose an estimator that is adaptive to the potential low-rank structure of the covariance matrix as well as to the proportion of contaminated data, and admits tight deviation guarantees despite rather weak assumptions on the underlying distribution. Finally, we discuss the algorithms that allow to approximate the proposed estimator in a numerically efficient way.
  3. One-bit quantization has attracted attention in massive MIMO, radar, and array processing, due to its simplicity, low cost, and capability of parameter estimation. Specifically, the shape of the covariance of the unquantized data can be estimated from the arcsine law and onebit data, if the unquantized data is Gaussian. However, in practice, the Gaussian assumption is not satisfied due to outliers. It is known from the literature that outliers can be modeled by complex elliptically symmetric (CES) distributions with heavy tails. This paper shows that the arcsine law remains applicable to CES distributions. Therefore, the normalized scatter matrix of the unquantized data can be readily estimated from one-bit samples derived from CES distributions. The proposed estimator is not only computationally fast but also robust to CES distributions with heavy tails. These attributes will be demonstrated through numerical examples, in terms of computational time and the estimation error. An application in DOA estimation with MUSIC spectrum is also presented.
  4. This paper studies M-estimators with gradient-Lipschitz loss function regularized with convex penalty in linear models with Gaussian design matrix and arbitrary noise distribution. A practical example is the robust M-estimator constructed with the Huber loss and the Elastic-Net penalty and the noise distribution has heavy-tails. Our main contributions are three-fold. (i) We provide general formulae for the derivatives of regularized M-estimators $\hat\beta(y,X)$ where differentiation is taken with respect to both X and y; this reveals a simple differentiability structure shared by all convex regularized M-estimators. (ii) Using these derivatives, we characterize the distribution of the residuals in the intermediate high-dimensional regime where dimension and sample size are of the same order. (iii) Motivated by the distribution of the residuals, we propose a novel adaptive criterion to select tuning parameters of regularized M-estimators. The criterion approximates the out-of-sample error up to an additive constant independent of the estimator, so that minimizing the criterion provides a proxy for minimizing the out-of-sample error. The proposed adaptive criterion does not require the knowledge of the noise distribution or of the covariance of the design. Simulated data confirms the theoretical findings, regarding both the distribution of the residuals and the success of the criterion asmore »a proxy of the out-of-sample error. Finally our results reveal new relationships between the derivatives of the $\hat\beta$ and the effective degrees of freedom of the M-estimators, which are of independent interest.« less
  5. We study high-dimensional signal recovery from non-linear measurements with design vectors having elliptically symmetric distribution. Special attention is devoted to the situation when the unknown signal belongs to a set of low statistical complexity, while both the measurements and the design vectors are heavy-tailed. We propose and analyze a new estimator that adapts to the structure of the problem, while being robust both to the possible model misspecification characterized by arbitrary non-linearity of the measurements as well as to data corruption modeled by the heavy-tailed distributions. Moreover, this estimator has low computational complexity. Our results are expressed in the form of exponential concentration inequalities for the error of the proposed estimator. On the technical side, our proofs rely on the generic chaining methods, and illustrate the power of this approach for statistical applications. Theory is supported by numerical experiments demonstrating that our estimator outperforms existing alternatives when data is heavy-tailed.